SD 204 : Linear model Properties of Ordinary Least Squares

François Portier, Joseph Salmon

http://josephsalmon.eu Télécom Paristech, Institut Mines-Télécom

Outline

The fixed and random design models

Coefficient estimation

Noise level

Random design model

Miscellaneous

Table of Contents

The fixed and random design models

Coefficient estimation

Noise level

Random design model

Miscellaneous

The fixed design model

Model I

$$y_{i} = \theta_{0}^{\star} + \sum_{k=1}^{p} \theta_{k}^{\star} x_{i,k} + \varepsilon_{i}$$

$$x_{i}^{\top} = (1, x_{i,1}, \dots, x_{i,p}) \in \mathbb{R}^{p+1}$$

$$\varepsilon_{i} \stackrel{i.i.d}{\sim} \varepsilon, \text{ for } i = 1, \dots, n$$

$$\mathbb{E}(\varepsilon) = 0, \operatorname{Var}(\epsilon) = \sigma^{2}$$

- x_i is deterministic
- σ^2 is called the noise level

Examples

- Physical experiment when the analyst is choosing the design e.g.,temperature of the experiment
- ▶ Some features are not random *e.g.*, time, location.

The fixed design Gaussian model

Model I with Gaussian noise

$$y_i = \theta_0^{\star} + \sum_{k=1}^{p} \theta_k^{\star} x_{i,k} + \varepsilon_i$$

$$x_i^{\top} = (1, x_{i,1}, \dots, x_{i,p}) \in \mathbb{R}^{p+1}$$

$$\varepsilon_i \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma^2), \text{ for } i = 1, \dots, n$$

Examples

- Parametric model : specified by the two parameters $(\boldsymbol{\theta}, \sigma)$
- Strong assumption

The random design model

Model II

$$y_{i} = \theta_{0}^{\star} + \sum_{k=1}^{p} \theta_{k}^{\star} x_{i,k} + \varepsilon_{i}$$

$$x_{i}^{\top} = (1, x_{i,1}, \dots, x_{i,p}) \in \mathbb{R}^{p+1}$$

$$(\varepsilon_{i}, x_{i}) \stackrel{i.i.d}{\sim} (\varepsilon, x), \text{ for } i = 1, \dots, n$$

$$\mathbb{E}(\varepsilon | x) = 0, \operatorname{Var}(\varepsilon | x) = \sigma^{2}$$

Rem: here, the features are modelled as random (they might also suffer from some noise)

The ordinary least squares (OLS) estimator

$$\hat{\boldsymbol{\theta}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^{p+1}}{\operatorname{arg \, min}} \sum_{i=1}^{n} \left(y_i - \theta_0 - \sum_{k=1}^{p} \theta_k x_{i,k} \right)^2$$

How to deal with these two models?

- The estimator is the same for both models
- The mathematics involved are different for each case
- The study of the fixed design case is easier as many closed formulas are available
- ullet The two models lead to the same estimators of the variance σ^2

Important formula

In both models, whenever $X = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^{n \times (p+1)}$ has full rank,

$$\hat{\boldsymbol{\theta}} = \boldsymbol{\theta}^{\star} + (X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon}$$

Table of Contents

The fixed and random design models

Coefficient estimation

Bias

Estimation and prediction risk

Variance

Noise leve

Random design model

Miscellaneous

Proposition

Under model I, whenever the matrix X has full rank, the least squares estimator is unbiased, i.e.,

$$\mathbb{E}(\hat{\boldsymbol{\theta}}) = \boldsymbol{\theta}^{\star}$$

$$B = \mathbb{E}(\hat{\boldsymbol{\theta}}) - \boldsymbol{\theta}^* = \mathbb{E}((X^\top X)^{-1} X^\top \mathbf{y}) - \boldsymbol{\theta}^*$$

Proposition

Under model I, whenever the matrix X has full rank, the least squares estimator is unbiased, i.e.,

$$\mathbb{E}(\hat{\boldsymbol{\theta}}) = \boldsymbol{\theta}^{\star}$$

$$B = \mathbb{E}(\hat{\boldsymbol{\theta}}) - \boldsymbol{\theta}^* = \mathbb{E}((X^\top X)^{-1} X^\top \mathbf{y}) - \boldsymbol{\theta}^*$$
$$B = \mathbb{E}((X^\top X)^{-1} X^\top (X \boldsymbol{\theta}^* + \varepsilon)) - \boldsymbol{\theta}^*$$

Proposition

Under model I, whenever the matrix X has full rank, the least squares estimator is unbiased, i.e.,

$$\mathbb{E}(\hat{\boldsymbol{\theta}}) = \boldsymbol{\theta}^{\star}$$

$$B = \mathbb{E}(\hat{\boldsymbol{\theta}}) - \boldsymbol{\theta}^* = \mathbb{E}((X^\top X)^{-1} X^\top \mathbf{y}) - \boldsymbol{\theta}^*$$

$$B = \mathbb{E}((X^\top X)^{-1} X^\top (X \boldsymbol{\theta}^* + \boldsymbol{\varepsilon})) - \boldsymbol{\theta}^*$$

$$B = (X^\top X)^{-1} X^\top X \boldsymbol{\theta}^* + (X^\top X)^{-1} X^\top \mathbb{E}(\boldsymbol{\varepsilon}) - \boldsymbol{\theta}^* = 0$$

Proposition

Under model I, whenever the matrix X has full rank, the least squares estimator is unbiased, i.e.,

$$\mathbb{E}(\hat{\boldsymbol{\theta}}) = \boldsymbol{\theta}^{\star}$$

$$B = \mathbb{E}(\hat{\boldsymbol{\theta}}) - \boldsymbol{\theta}^* = \mathbb{E}((X^\top X)^{-1} X^\top \mathbf{y}) - \boldsymbol{\theta}^*$$

$$B = \mathbb{E}((X^\top X)^{-1} X^\top (X \boldsymbol{\theta}^* + \boldsymbol{\varepsilon})) - \boldsymbol{\theta}^*$$

$$B = (X^\top X)^{-1} X^\top X \boldsymbol{\theta}^* + (X^\top X)^{-1} X^\top \mathbb{E}(\boldsymbol{\varepsilon}) - \boldsymbol{\theta}^* = 0$$

Definition

The quadratic risk is given by

$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^2$$

where $\|\cdot\|$ is the Euclidean norm

Bias/Variance decomposition

$$\boxed{\mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^2 = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\hat{\boldsymbol{\theta}})\|^2 + \mathbb{E}\|\mathbb{E}(\hat{\boldsymbol{\theta}}) - \hat{\boldsymbol{\theta}}\|^2}$$

$$\mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^{2} = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\hat{\boldsymbol{\theta}}) + \mathbb{E}(\hat{\boldsymbol{\theta}}) - \hat{\boldsymbol{\theta}}\|^{2}$$

Definition

The quadratic risk is given by

$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^2$$

where $\|\cdot\|$ is the Euclidean norm

Bias/Variance decomposition

$$\left| \mathbb{E} \| \boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}} \|^{2} = \mathbb{E} \| \boldsymbol{\theta}^{\star} - \mathbb{E} (\hat{\boldsymbol{\theta}}) \|^{2} + \mathbb{E} \| \mathbb{E} (\hat{\boldsymbol{\theta}}) - \hat{\boldsymbol{\theta}} \|^{2} \right|$$

$$\begin{split} \mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^{2} &= \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\hat{\boldsymbol{\theta}}) + \mathbb{E}(\hat{\boldsymbol{\theta}}) - \hat{\boldsymbol{\theta}}\|^{2} \\ &= \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\hat{\boldsymbol{\theta}})\|^{2} + \mathbb{E}\|\mathbb{E}(\hat{\boldsymbol{\theta}}) - \hat{\boldsymbol{\theta}}\| \\ &+ 2\mathbb{E}\langle\mathbb{E}(\hat{\boldsymbol{\theta}}) - \hat{\boldsymbol{\theta}}, \boldsymbol{\theta}^{\star} - \mathbb{E}(\hat{\boldsymbol{\theta}})\rangle \end{split}$$

Definition

The quadratic risk is given by

$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^2$$

where $\|\cdot\|$ is the Euclidean norm

Bias/Variance decomposition

$$\|\mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^{2} = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\hat{\boldsymbol{\theta}})\|^{2} + \mathbb{E}\|\mathbb{E}(\hat{\boldsymbol{\theta}}) - \hat{\boldsymbol{\theta}}\|^{2}$$

$$\begin{split} \mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^{2} &= \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\hat{\boldsymbol{\theta}}) + \mathbb{E}(\hat{\boldsymbol{\theta}}) - \hat{\boldsymbol{\theta}}\|^{2} \\ &= \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\hat{\boldsymbol{\theta}})\|^{2} + \mathbb{E}\|\mathbb{E}(\hat{\boldsymbol{\theta}}) - \hat{\boldsymbol{\theta}}\|^{2} \\ &+ 2\mathbb{E}\langle\mathbb{E}(\hat{\boldsymbol{\theta}}) - \hat{\boldsymbol{\theta}}, \boldsymbol{\theta}^{\star} - \mathbb{E}(\hat{\boldsymbol{\theta}})\rangle \\ &= \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\hat{\boldsymbol{\theta}})\|^{2} + \mathbb{E}\|\mathbb{E}(\hat{\boldsymbol{\theta}}) - \hat{\boldsymbol{\theta}}\|^{2} \end{split}$$

Definition

The quadratic risk is given by

$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^2$$

where $\|\cdot\|$ is the Euclidean norm

Bias/Variance decomposition

$$\boxed{\mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^2 = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\hat{\boldsymbol{\theta}})\|^2 + \mathbb{E}\|\mathbb{E}(\hat{\boldsymbol{\theta}}) - \hat{\boldsymbol{\theta}}\|^2}$$

$$\begin{split} \mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^{2} &= \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\hat{\boldsymbol{\theta}}) + \mathbb{E}(\hat{\boldsymbol{\theta}}) - \hat{\boldsymbol{\theta}}\|^{2} \\ &= \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\hat{\boldsymbol{\theta}})\|^{2} + \mathbb{E}\|\mathbb{E}(\hat{\boldsymbol{\theta}}) - \hat{\boldsymbol{\theta}}\|^{2} \\ &+ 2\mathbb{E}\langle\mathbb{E}(\hat{\boldsymbol{\theta}}) - \hat{\boldsymbol{\theta}}, \boldsymbol{\theta}^{\star} - \mathbb{E}(\hat{\boldsymbol{\theta}})\rangle \\ &= \mathbb{E}\|\boldsymbol{\theta}^{\star} - \mathbb{E}(\hat{\boldsymbol{\theta}})\|^{2} + \mathbb{E}\|\mathbb{E}(\hat{\boldsymbol{\theta}}) - \hat{\boldsymbol{\theta}}\|^{2} \end{split}$$

Bias/Variance decomposition

 $\frac{\text{Reminder}}{\mathbb{E}\|\boldsymbol{\theta}^{\star}-\hat{\boldsymbol{\theta}}\|^2} = \mathbb{E}\|\mathbb{E}(\hat{\boldsymbol{\theta}})-\hat{\boldsymbol{\theta}}\|^2$

Definition

Let $A \in \mathbb{R}^{n \times n}$ denote a matrix. The **trace** of A is the sum of the diagonal elements of A and is denoted by $\operatorname{tr}(A)$:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{i,i}$$

- $\operatorname{tr}(A) = \operatorname{tr}(A^{\top})$
- For any $A, B \in \mathbb{R}^{n \times n}$, and $\alpha \in \mathbb{R}$, $\operatorname{tr}(\alpha A + B) = \alpha \operatorname{tr}(A) + \operatorname{tr}(B)$ (linearity)

Definition

Let $A \in \mathbb{R}^{n \times n}$ denote a matrix. The **trace** of A is the sum of the diagonal elements of A and is denoted by $\operatorname{tr}(A)$:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{i,i}$$

- $\operatorname{tr}(A) = \operatorname{tr}(A^{\top})$
- For any $A, B \in \mathbb{R}^{n \times n}$, and $\alpha \in \mathbb{R}$, $\operatorname{tr}(\alpha A + B) = \alpha \operatorname{tr}(A) + \operatorname{tr}(B)$ (linearity)
- $\operatorname{tr}(A^{\top}A) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j}^{2} := ||A||_{F}^{2}$

Definition

Let $A \in \mathbb{R}^{n \times n}$ denote a matrix. The **trace** of A is the sum of the diagonal elements of A and is denoted by $\operatorname{tr}(A)$:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{i,i}$$

- $\operatorname{tr}(A) = \operatorname{tr}(A^{\top})$
- For any $A, B \in \mathbb{R}^{n \times n}$, and $\alpha \in \mathbb{R}$, $\operatorname{tr}(\alpha A + B) = \alpha \operatorname{tr}(A) + \operatorname{tr}(B)$ (linearity)
- $\operatorname{tr}(A^{\top}A) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j}^{2} := \|A\|_{F}^{2}$
- For any $A, B \in \mathbb{R}^{n \times n}$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$

Definition

Let $A \in \mathbb{R}^{n \times n}$ denote a matrix. The **trace** of A is the sum of the diagonal elements of A and is denoted by $\operatorname{tr}(A)$:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{i,i}$$

- $\operatorname{tr}(A) = \operatorname{tr}(A^{\top})$
- For any $A, B \in \mathbb{R}^{n \times n}$, and $\alpha \in \mathbb{R}$, $\operatorname{tr}(\alpha A + B) = \alpha \operatorname{tr}(A) + \operatorname{tr}(B)$ (linearity)
- $\operatorname{tr}(A^{\top}A) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j}^{2} := \|A\|_{F}^{2}$
- For any $A, B \in \mathbb{R}^{n \times n}$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$
- $\operatorname{tr}(PAP^{-1}) = \operatorname{tr}(A)$, hence if A is diagonalisable, the trace is the sum of the eigenvalues

Definition

Let $A \in \mathbb{R}^{n \times n}$ denote a matrix. The **trace** of A is the sum of the diagonal elements of A and is denoted by $\operatorname{tr}(A)$:

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{i,i}$$

- $\operatorname{tr}(A) = \operatorname{tr}(A^{\top})$
- For any $A, B \in \mathbb{R}^{n \times n}$, and $\alpha \in \mathbb{R}$, $\operatorname{tr}(\alpha A + B) = \alpha \operatorname{tr}(A) + \operatorname{tr}(B)$ (linearity)
- $\operatorname{tr}(A^{\top}A) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j}^{2} := ||A||_{F}^{2}$
- For any $A, B \in \mathbb{R}^{n \times n}$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$
- $tr(PAP^{-1}) = tr(A)$, hence if A is diagonalisable, the trace is the sum of the eigenvalues
- ightharpoonup If H is an orthogonal projector $\mathrm{tr}(H)=\mathrm{rank}(H)$

Definition

Let $A \in \mathbb{R}^{n \times n}$ denote a matrix. The **trace** of A is the sum of the diagonal elements of A and is denoted by tr(A):

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{i,i}$$

- $\operatorname{tr}(A) = \operatorname{tr}(A^{\top})$
- For any $A, B \in \mathbb{R}^{n \times n}$, and $\alpha \in \mathbb{R}$, $\operatorname{tr}(\alpha A + B) = \alpha \operatorname{tr}(A) + \operatorname{tr}(B)$ (linearity)
- $\operatorname{tr}(A^{\top}A) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j}^{2} := ||A||_{F}^{2}$
- For any $A, B \in \mathbb{R}^{n \times n}$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$
- $tr(PAP^{-1}) = tr(A)$, hence if A is diagonalisable, the trace is the sum of the eigenvalues
- If H is an orthogonal projector tr(H) = rank(H)

Estimation risk
$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^2$$

Under model I, whenever the matrix X has full rank, we have

$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2} \operatorname{tr}\left((X^{\top}X)^{-1}\right)$$

$$\frac{1}{R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}})} = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})^{\top}(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})\right] = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \varepsilon) - \boldsymbol{\theta}^{\star})^{\top}((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \varepsilon) - \boldsymbol{\theta}^{\star})\right]$$

Estimation risk
$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^2$$

Under model I, whenever the matrix X has full rank, we have

$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2} \operatorname{tr}\left((X^{\top}X)^{-1}\right)$$

$$\overline{R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}})} = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})^{\top}(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})\right] = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})^{\top}((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})^{\top}((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})\right] = \mathbb{E}(\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-2}X^{\top}\boldsymbol{\varepsilon})$$

Estimation risk
$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^2$$

Under model I, whenever the matrix X has full rank, we have

$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2} \operatorname{tr}\left((X^{\top}X)^{-1}\right)$$

$$\frac{1}{R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}})} = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})^{\top}(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})\right] = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})^{\top}((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})^{\top}((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})\right] = \mathbb{E}(\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-2}X^{\top}\boldsymbol{\varepsilon}) \\
= \operatorname{tr}\left[\mathbb{E}(\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-1}(X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})\right] \text{ (thx to } \operatorname{tr}(\boldsymbol{u}^{\top}\boldsymbol{u}) = \boldsymbol{u}^{\top}\boldsymbol{u})$$

Estimation risk
$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^2$$

Under model I, whenever the matrix X has full rank, we have

$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2} \operatorname{tr}\left((X^{\top}X)^{-1}\right)$$

$$\frac{1}{R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}})} = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})^{\top}(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})\right] = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})^{\top}((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})^{\top}((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})\right] = \mathbb{E}(\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-2}X^{\top}\boldsymbol{\varepsilon}) \\
= \operatorname{tr}\left[\mathbb{E}(\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-1}(X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})\right] \text{ (thx to } \operatorname{tr}(\boldsymbol{u}^{\top}\boldsymbol{u}) = \boldsymbol{u}^{\top}\boldsymbol{u}) \\
- \mathbb{E}\left(\operatorname{tr}\left[(X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon}\right]^{\top}X^{\top}\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon}\right]$$

Estimation risk
$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^2$$

Under model I, whenever the matrix X has full rank, we have

$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2}\operatorname{tr}\left((X^{\top}X)^{-1}\right)$$

$$\overline{R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}})} = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})^{\top}(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})\right] = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})^{\top}((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})^{\top}((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})\right] = \mathbb{E}(\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-2}X^{\top}\boldsymbol{\varepsilon}) \\
= \operatorname{tr}\left[\mathbb{E}(\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-1}(X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})\right] \text{ (thx to } \operatorname{tr}(\boldsymbol{u}^{\top}\boldsymbol{u}) = \boldsymbol{u}^{\top}\boldsymbol{u}) \\
= \mathbb{E}\left(\operatorname{tr}\left[(X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-1}\right]\right) \\
= \operatorname{tr}\left[(X^{\top}X)^{-1}X^{\top}\mathbb{E}(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top})X(X^{\top}X)^{-1}\right]$$

Estimation risk
$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^2$$

Under model I, whenever the matrix X has full rank, we have

$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2}\operatorname{tr}\left((X^{\top}X)^{-1}\right)$$

$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})^{\top}(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})\right] = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right]$$

$$= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})^{\top}((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})\right]$$

$$= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})^{\top}((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})\right] = \mathbb{E}(\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-2}X^{\top}\boldsymbol{\varepsilon})$$

$$= \operatorname{tr}\left[\mathbb{E}(\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-1}(X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})\right] \text{ (thx to } \operatorname{tr}(u^{\top}u) = u^{\top}u)$$

$$= \mathbb{E}\left(\operatorname{tr}\left[(X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-1}\right]\right)$$

$$= \operatorname{tr}\left[(X^{\top}X)^{-1}X^{\top}\mathbb{E}(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top})X(X^{\top}X)^{-1}\right]$$

$$= \sigma^{2}\operatorname{tr}((X^{\top}X)^{-1})$$

Estimation risk
$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\|\boldsymbol{\theta}^{\star} - \hat{\boldsymbol{\theta}}\|^2$$

Under model I, whenever the matrix X has full rank, we have

$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] = \sigma^{2} \operatorname{tr}\left((X^{\top}X)^{-1}\right)$$

$$R(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})^{\top}(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})\right] = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right]$$

$$= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})^{\top}((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})\right]$$

$$= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})^{\top}((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})\right] = \mathbb{E}(\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-2}X^{\top}\boldsymbol{\varepsilon})$$

$$= \operatorname{tr}\left[\mathbb{E}(\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-1}(X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})\right] \text{ (thx to } \operatorname{tr}(u^{\top}u) = u^{\top}u)$$

$$= \mathbb{E}\left(\operatorname{tr}\left[(X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}X(X^{\top}X)^{-1}\right]\right)$$

$$= \operatorname{tr}\left[(X^{\top}X)^{-1}X^{\top}\mathbb{E}(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top})X(X^{\top}X)^{-1}\right]$$

$$= \sigma^{2}\operatorname{tr}((X^{\top}X)^{-1})$$

Prediction risk (normalized) $R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E} \|X\boldsymbol{\theta}^{\star} - \hat{\mathbf{y}}\|^2 / n$

Under model I, whenever the matrix X has full rank, we have

$$R_{\text{pred}}(\boldsymbol{\theta^{\star}}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta^{\star}})^{\top} \left(\frac{X^{\top}X}{n}\right)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta^{\star}})\right] = \sigma^{2} \frac{\text{rank}(X)}{n}$$

Because X has full rank, rank(X) = p + 1.

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top} (X^{\top} X)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right]$$
$$= \mathbb{E}(\varepsilon^{\top} X (X^{\top} X)^{-1} (X^{\top} X)(X^{\top} X)^{-1} X^{\top} \varepsilon)$$

Prediction risk (normalized) $R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E} \|X\boldsymbol{\theta}^{\star} - \hat{\mathbf{y}}\|^2/n$

Under model I, whenever the matrix X has full rank, we have

$$R_{\mathrm{pred}}(\boldsymbol{\theta^{\star}}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta^{\star}})^{\top} \left(\frac{X^{\top}X}{n}\right)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta^{\star}})\right] = \sigma^{2} \frac{\mathrm{rank}(X)}{n}$$

Because X has full rank, rank(X) = p + 1.

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top} (X^{\top} X) (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star}) \right]$$
$$= \mathbb{E}(\boldsymbol{\varepsilon}^{\top} X (X^{\top} X)^{-1} (X^{\top} X) (X^{\top} X)^{-1} X^{\top} \boldsymbol{\varepsilon})$$
$$= \mathbb{E}(\boldsymbol{\varepsilon}^{\top} X (X^{\top} X)^{-1} X^{\top} \boldsymbol{\varepsilon})$$

Prediction risk (normalized) $R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E} \|X\boldsymbol{\theta}^{\star} - \hat{\mathbf{y}}\|^2/n$

Under model I, whenever the matrix X has full rank, we have

$$R_{\mathrm{pred}}(\boldsymbol{\theta^{\star}}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta^{\star}})^{\top} \left(\frac{X^{\top}X}{n}\right)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta^{\star}})\right] = \sigma^{2} \frac{\mathrm{rank}(X)}{n}$$

Because X has full rank, rank(X) = p + 1.

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top} (X^{\top} X)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right]$$
$$= \mathbb{E}(\boldsymbol{\varepsilon}^{\top} X (X^{\top} X)^{-1} (X^{\top} X) (X^{\top} X)^{-1} X^{\top} \boldsymbol{\varepsilon})$$
$$= \mathbb{E}(\boldsymbol{\varepsilon}^{\top} X (X^{\top} X)^{-1} X^{\top} \boldsymbol{\varepsilon})$$
$$= \text{tr}[\mathbb{E}(\boldsymbol{\varepsilon}^{\top} H_{X} \boldsymbol{\varepsilon})] = \text{tr}[\mathbb{E}(\boldsymbol{\varepsilon}^{\top} H_{X}^{\top} H_{X} \boldsymbol{\varepsilon})]$$

Prediction risk (normalized) $R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E} \|X\boldsymbol{\theta}^{\star} - \hat{\mathbf{y}}\|^2/n$

Under model I, whenever the matrix X has full rank, we have

$$R_{\mathrm{pred}}(\boldsymbol{\theta^{\star}}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta^{\star}})^{\top} \left(\frac{X^{\top}X}{n}\right)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta^{\star}})\right] = \sigma^{2} \frac{\mathrm{rank}(X)}{n}$$

Because X has full rank, rank(X) = p + 1.

$$n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top} (X^{\top} X)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right]$$

$$= \mathbb{E}(\boldsymbol{\varepsilon}^{\top} X (X^{\top} X)^{-1} (X^{\top} X) (X^{\top} X)^{-1} X^{\top} \boldsymbol{\varepsilon})$$

$$= \mathbb{E}(\boldsymbol{\varepsilon}^{\top} X (X^{\top} X)^{-1} X^{\top} \boldsymbol{\varepsilon})$$

$$= \text{tr}[\mathbb{E}(\boldsymbol{\varepsilon}^{\top} H_{X} \boldsymbol{\varepsilon})] = \text{tr}[\mathbb{E}(\boldsymbol{\varepsilon}^{\top} H_{X}^{\top} H_{X} \boldsymbol{\varepsilon})]$$

$$= \text{tr}[\mathbb{E}(H_{X} \boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\top} H_{X}^{\top})] = \text{tr}(H_{X} \mathbb{E}(\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\top}) H_{X}^{\top})$$

Prediction risk (normalized) $R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E} \|X\boldsymbol{\theta}^{\star} - \hat{\mathbf{y}}\|^2/n$

Under model I, whenever the matrix X has full rank, we have

$$R_{\mathrm{pred}}(\boldsymbol{\theta^{\star}}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta^{\star}})^{\top} \left(\frac{X^{\top}X}{n}\right)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta^{\star}})\right] = \sigma^{2} \frac{\mathrm{rank}(X)}{n}$$

Because X has full rank, rank(X) = p + 1.

$$\frac{\log \mathbf{G}}{n \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}})} = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top} (X^{\top} X)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})\right] \\
= \mathbb{E}(\boldsymbol{\varepsilon}^{\top} X (X^{\top} X)^{-1} (X^{\top} X)(X^{\top} X)^{-1} X^{\top} \boldsymbol{\varepsilon}) \\
= \mathbb{E}(\boldsymbol{\varepsilon}^{\top} X (X^{\top} X)^{-1} X^{\top} \boldsymbol{\varepsilon}) \\
= \text{tr}[\mathbb{E}(\boldsymbol{\varepsilon}^{\top} H_X \boldsymbol{\varepsilon})] = \text{tr}[\mathbb{E}(\boldsymbol{\varepsilon}^{\top} H_X^{\top} H_X \boldsymbol{\varepsilon})] \\
= \text{tr}[\mathbb{E}(H_X \boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\top} H_X^{\top})] = \text{tr}\left(H_X \mathbb{E}(\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\top}) H_X^{\top}\right) \\
= \sigma^2 \text{tr}(H_X) = \sigma^2 \text{rank}(H_X) = \sigma^2 \text{rank}(X)$$

Prediction risk (normalized) $R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) = \mathbb{E} \|X\boldsymbol{\theta}^{\star} - \hat{\mathbf{y}}\|^2/n$

Under model I, whenever the matrix X has full rank, we have

$$R_{\mathrm{pred}}(\boldsymbol{\theta^{\star}}, \hat{\boldsymbol{\theta}}) = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta^{\star}})^{\top} \left(\frac{X^{\top}X}{n}\right)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta^{\star}})\right] = \sigma^{2} \frac{\mathrm{rank}(X)}{n}$$

Because X has full rank, rank(X) = p + 1.

$$\begin{aligned}
\widehat{n} \cdot R_{\text{pred}}(\boldsymbol{\theta}^{\star}, \hat{\boldsymbol{\theta}}) &= \mathbb{E} \left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top} (X^{\top} X) (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star}) \right] \\
&= \mathbb{E} (\boldsymbol{\varepsilon}^{\top} X (X^{\top} X)^{-1} (X^{\top} X) (X^{\top} X)^{-1} X^{\top} \boldsymbol{\varepsilon}) \\
&= \mathbb{E} (\boldsymbol{\varepsilon}^{\top} X (X^{\top} X)^{-1} X^{\top} \boldsymbol{\varepsilon}) \\
&= \text{tr} \left[\mathbb{E} (\boldsymbol{\varepsilon}^{\top} H_X \boldsymbol{\varepsilon}) \right] &= \text{tr} \left[\mathbb{E} (\boldsymbol{\varepsilon}^{\top} H_X^{\top} H_X \boldsymbol{\varepsilon}) \right] \\
&= \text{tr} \left[\mathbb{E} (H_X \boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\top} H_X^{\top}) \right] &= \text{tr} \left(H_X \mathbb{E} (\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\top}) H_X^{\top} \right) \\
&= \sigma^2 \operatorname{tr} (H_X) &= \sigma^2 \operatorname{rank}(H_X) &= \sigma^2 \operatorname{rank}(X)
\end{aligned}$$

Covariance of $\hat{m{ heta}}$

Under model I, whenever the matrix X has full rank, we have

$$\operatorname{Cov}(\hat{\boldsymbol{\theta}}) = \sigma^2 (X^{\top} X)^{-1}$$

$\frac{\mathsf{Proof}}{\mathsf{Cov}(\hat{\boldsymbol{\theta}})}$:

$$= \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})^{\top}\right] = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}\right]$$

$$= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})^{\top}\right]$$

Covariance of $\hat{m{ heta}}$

Under model I, whenever the matrix X has full rank, we have

$$\operatorname{Cov}(\hat{\boldsymbol{\theta}}) = \sigma^2 (X^{\top} X)^{-1}$$

$\begin{aligned} & \frac{\mathsf{Proof}}{\mathsf{Cov}(\hat{\boldsymbol{\theta}})} : \\ & = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})^{\top}\right] = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}\right] \\ & = \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})^{\top}\right] \\ & = \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})^{\top}\right] \end{aligned}$

Covariance of $\hat{m{ heta}}$

Under model I, whenever the matrix X has full rank, we have

$$\operatorname{Cov}(\hat{\boldsymbol{\theta}}) = \sigma^2 (X^{\top} X)^{-1}$$

$$\frac{\operatorname{Proof}:}{\operatorname{Cov}(\hat{\boldsymbol{\theta}})} = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})^{\top}\right] = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})^{\top}\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})^{\top}\right] \\
= (X^{\top}X)^{-1}X^{\top}\mathbb{E}\left[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\right]X(X^{\top}X)^{-1}$$

Covariance of $\hat{m{ heta}}$

Under model I, whenever the matrix X has full rank, we have

$$\operatorname{Cov}(\hat{\boldsymbol{\theta}}) = \sigma^2 (X^{\top} X)^{-1}$$

$$\frac{\text{Proof}:}{\text{Cov}(\hat{\boldsymbol{\theta}})} = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})^{\top}\right] = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})^{\top}\right] \\
= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})^{\top}\right] \\
= (X^{\top}X)^{-1}X^{\top}\mathbb{E}\left[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\right]X(X^{\top}X)^{-1} \\
= (X^{\top}X)^{-1}X^{\top}(\sigma^{2}\operatorname{Id}_{n})X(X^{\top}X)^{-1}$$

Covariance of $\hat{m{ heta}}$

Under model I, whenever the matrix X has full rank, we have

$$\operatorname{Cov}(\hat{\boldsymbol{\theta}}) = \sigma^2 (X^{\top} X)^{-1}$$

$\frac{\text{Proof}:}{\text{Cov}(\hat{\boldsymbol{\theta}})} = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})^{\top}\right] = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}\right] \\ = \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})^{\top}\right] \\ = \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})^{\top}\right] \\ = (X^{\top}X)^{-1}X^{\top}\mathbb{E}\left[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}\right]X(X^{\top}X)^{-1} \\ = (X^{\top}X)^{-1}X^{\top}(\sigma^{2}\operatorname{Id}_{n})X(X^{\top}X)^{-1} \\ = \sigma^{2}(X^{\top}X)^{-1}$

Covariance of $\hat{m{ heta}}$

Under model I, whenever the matrix X has full rank, we have

$$\operatorname{Cov}(\hat{\boldsymbol{\theta}}) = \sigma^2 (X^{\top} X)^{-1}$$

Proof: $Cov(\hat{\boldsymbol{\theta}})$ $= \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})(\hat{\boldsymbol{\theta}} - \mathbb{E}\hat{\boldsymbol{\theta}})^{\top}\right] = \mathbb{E}\left[(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star})^{\top}\right]$ $= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})((X^{\top}X)^{-1}X^{\top}(X\boldsymbol{\theta}^{\star} + \boldsymbol{\varepsilon}) - \boldsymbol{\theta}^{\star})^{\top} \right]$ $= \mathbb{E}\left[((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})((X^{\top}X)^{-1}X^{\top}\boldsymbol{\varepsilon})^{\top} \right]$ $= (X^{\top}X)^{-1}X^{\top}\mathbb{E}\left[\varepsilon\varepsilon^{\top}\right]X(X^{\top}X)^{-1}$ $= (X^{\top}X)^{-1}X^{\top}(\sigma^2 \operatorname{Id}_n)X(X^{\top}X)^{-1}$ $= \sigma^2 (X^{\top} X)^{-1}$

Table of Contents

The fixed and random design models

Coefficient estimation

Noise level

Estimation of the noise level Heteroscedasticity Gaussian noise

Random design model

Miscellaneous

Estimation of the noise level

• An estimator of the noise level σ^2 is given by

$$\boxed{\frac{1}{n} \|\mathbf{y} - X\hat{\boldsymbol{\theta}}\|_2^2}$$

Another estimator which is unbiased is defined by

$$\hat{\sigma}^2 = \frac{1}{n - \text{rank}(X)} \|\mathbf{y} - X\hat{\boldsymbol{\theta}}\|_2^2$$

Estimation of the noise level

$\hat{\sigma}^2$ is unbiased

Under model I, whenever the matrix X has full rank, we have

$$\mathbb{E}\hat{\sigma}^2 = \sigma^2$$

Proof:

$$\overline{\|\mathbf{y} - \hat{\mathbf{y}}\|_{2}^{2}} = \mathbf{y}^{\top} (\mathrm{Id}_{n} - H_{X}) \mathbf{y} = \boldsymbol{\varepsilon}^{\top} (\mathrm{Id}_{n} - H_{X}) \boldsymbol{\varepsilon} = \mathrm{tr} ((\mathrm{Id}_{n} - H_{X}) \boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\top})$$

Heteroscedasticity

Model I and Model II are homoscedastic models, *i.e.*,we assume that the noise level σ^2 does not depend on x_i

<u>Heteroscedastic Model</u>: we allow σ^2 to change with the observation i, we denote by $\sigma_i^2 > 0$ the associated variance

$$\begin{split} \hat{\pmb{\theta}} &\in \mathop{\arg\min}_{\pmb{\theta} \in \mathbb{R}^{p+1}} \sum_{i=1}^n \left(\frac{y_i - \left\langle \pmb{\theta}, x_i \right\rangle}{\sigma_i} \right)^2 = \mathop{\arg\min}_{\pmb{\theta} \in \mathbb{R}^{p+1}} (y - X \pmb{\theta})^\top \Omega (y - X \pmb{\theta}) \\ \text{with } \Omega &= \mathop{\mathrm{diag}} \left(\frac{1}{\sigma_1^2}, \dots, \frac{1}{\sigma_n^2} \right) \end{split}$$

Exo: give a closed formula for $\hat{\boldsymbol{\theta}}$ when $X^{\top}\Omega X$ has full rank

Exo: give a necessary and sufficient condition for $X^{\top}\Omega X$ to be invertible

Gaussian model

Proposition

Under model ${\ensuremath{\mathbf{I}}}$ with Gaussian noise, whenever the matrix X has full rank, we have

- (i) $\hat{\boldsymbol{\theta}}$ and $\hat{\sigma}$ are independent random variables
- (ii) $\sqrt{n}(\hat{\boldsymbol{\theta}} \boldsymbol{\theta}^*) \sim \mathcal{N}(0, \sigma^2(X^\top X/n)^{-1})$ for every n
- (iii) $(n \operatorname{rank}(X)) \frac{\hat{\sigma}^2}{\sigma^{*2}} \sim \chi^2_{n-\operatorname{rank}(X)}$ for every n
- (iv) Let $\hat{s}_k = (X^\top X/n)_{k,k}^{-1}$, $\sqrt{n} \left(\frac{\hat{\theta} \theta^*}{\sqrt{\hat{s}_k \hat{\sigma}^2}} \right) \sim \mathcal{T}_{n-\mathrm{rank}(X)}$

where $\mathcal{T}_{n-\operatorname{rank}(X)}$ stands for a student distribution with $n-\operatorname{rank}(X)$ degrees of freedom

Table of Contents

The fixed and random design models

Coefficient estimation

Noise level

Random design model Bias and variance

Miscellaneous

Bias and variance

Proposition

Under model II, whenever the matrix $X = (\mathbf{x}_1, \dots, \mathbf{x}_n)^{\top}$ has full rank, we have

$$\mathbb{E}(\hat{\boldsymbol{\theta}} \mid X) = \boldsymbol{\theta}^{\star}$$
$$\operatorname{Var}(\hat{\boldsymbol{\theta}} \mid X) = (X^{\top}X)^{-1}\sigma^{2}$$

<u>Proof</u>: The same as in the case of fixed design with the conditional expectation

Rem:We cannot compute the $\mathbb{E}(\hat{\theta})$ nor $\mathrm{Var}(\hat{\theta})$ because the matrix X has full rank is now random! Rem:One solution is to rely on asymptotic convergence

Asymptotics

Asymptotics of $\hat{m{ heta}}$

Under model II, whenever the covariance matrix $\mathop{\rm cov}(X)$ has full rank, we have

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star}) \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}(0, \sigma^2 S^{-1})$$

with $S = \mathbb{E}[\mathbf{x}\mathbf{x}^{\top}]$

Outline of the proof : It could happen that $\hat{\theta}$ is not uniquely defined, so we put

$$\hat{\boldsymbol{\theta}} = \left(X^{\top} X \right)^{+} X^{\top} Y$$

where A^+ is the generalized inverse of A

With high probability, we have that $X^\top X$ is invertible because $\frac{X^\top X}{n} = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^\top$ goes to S

Asymptotics

Outline of the proof:

As a consequence, in the asymptotics we can replace $(X^\top X)^+$ by $(X^\top X)^{-1}$ (that we shall admit)

Then we use that

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^{\star}) = \left(\frac{X^{\top}X}{n}\right)^{-1} \left(\frac{X^{\top}\epsilon}{\sqrt{n}}\right)$$

- ▶ The term on the right $\frac{X^{\top}\varepsilon}{\sqrt{n}}$ converges to $\mathcal{N}(0, \mathbb{E}[\mathbf{x}\mathbf{x}^{\top}]\sigma^2)$ in distribution
- ▶ The term on the left $\left(\frac{X^{\top}X}{n}\right)^{-1}$ goes to S^{-1} in probability

Asymptotics

In the random design model, since closed formulas for the bias and variance of θ are lacking; Asymptotics is used to validate the procedure and to build-up the variance estimator

Variance estimation

By the previous Proposition, the variance to estimate is $\sigma^2 S^{-1}$

a natural "Plug-in" estimator is $\hat{\sigma}^2 \hat{S}_{\text{m}}^+$

with
$$\hat{\sigma}^2 = \frac{1}{n - \operatorname{rank}(X)} \|\mathbf{y} - X\hat{\boldsymbol{\theta}}\|_2^2$$

Rem: It coincides with the estimator in the case of fixed design

Variance estimation

Noise level is conditionally unbiased

Under model II, whenever the matrix $X = (\mathbf{x}_1, \dots, \mathbf{x}_n)^{\top}$ has full rank, we have

$$\mathbb{E}(\hat{\sigma}^2 \mid X) = \sigma^2$$

Exo: Write the proof

Convergence of the variance estimator

Under model II, if the covariance matrix $\mathop{\rm cov}(X)$ has full rank, we have

$$\hat{\sigma}^2 \hat{S}_n^+ \to \sigma^2 S^{-1}$$

in probability

Table of Contents

The fixed and random design models

Coefficient estimation

Noise level

Random design model

Miscellaneous

Qualitative variables Large dimension p > n

Qualitative variables

A variable is qualitative, when its state space is discrete (non-necessarily numeric)

Exemple: colors, gender, cities, etc.

 $\frac{\text{Classically}}{\text{qualitative variable with several dummy variables (valued in } \{0,1\})$

If each x_i is valued in a_1,\ldots,a_K , we define the following K explanatory variables : $\forall k \in [\![1,K]\!], \mathbbm{1}_{a_k} \in \mathbb{R}^n$ is given by

$$\forall i \in [1, n], \quad (\mathbb{1}_{a_k})_i = \begin{cases} 1, & \text{if } x_i = a_k \\ 0, & \text{else} \end{cases}$$

Examples

Binary case: M/F, yes/no, I like it/I don't.

Client	Gender
1	Н
2	F
3	Н
4	F
5	F

	1	F	H^{\setminus}
→	- 1	0	1
	İ	1	0
	İ	0	H\\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0
	į	1	0
		1	0

General case: colors, cities, etc.

Client	Colors
1	Blue
2	Blanc
3	Red
4	Red
5	Blue

Somme difficulties

<u>Correlations</u>: $\sum_{k=1}^{K} \mathbb{1}_{a_k} = \mathbf{1}_n!$ We can drop-off one modality (e.g.,drop_first=True dans get_dummies de pandas)

Without intercept, with all modalities $X = [\mathbb{1}_{a_1}, \dots, \mathbb{1}_{a_K}]$. If $x_{n+1} = a_k$ then $\hat{y}_{n+1} = \hat{\theta}_k$

With intercept, with one less modality : $X = [\mathbf{1}_n, \mathbb{1}_{a_2}, \dots, \mathbb{1}_{a_K}]$, dropping-off the first modality

If
$$x_{n+1}=a_k$$
 then $\hat{y}_{n+1}=egin{cases} \hat{\pmb{\theta}}_0, & \text{if } k=1\\ \hat{\pmb{\theta}}_0+\hat{\pmb{\theta}}_k, & \text{else} \end{cases}$

<u>Rem</u>: might give null column in Cross-Validation (if a modality is not present in a CV-fold)

Rem: penalization might help (e.g., Lasso, Ridge)

Exo: Compute the OLS for $X = [\mathbb{1}_{a_1}, \dots, \mathbb{1}_{a_K}] \in \mathbb{R}^{n \times K}$

What if n < p?

Many of the things presented before need to be adapted

For instance : if $\operatorname{rank}(X) = n$, then $H_X = \operatorname{Id}_n$ and $\hat{\mathbf{y}} = X\hat{\boldsymbol{\theta}} = \mathbf{y}$! The vector space generated by the columns $[\mathbf{x}_0, \dots, \mathbf{x}_p]$ is \mathbb{R}^n , making the observed signal and predicted signal are **identical**

 $\underline{\mathsf{Rem}}$: typical kind of problem in large dimension (when p is large)

 $\frac{Possible\ solution}{(coming\ soon)}: variable\ selection,\ \textit{cf}. Lasso\ and\ greedy\ methods}$

Web sites and books

- Python Packages for OLS :
 statsmodels
 sklearn.linear_model.LinearRegression
- ▶ McKinney (2012) about python for statistics
- ► Lejeune (2010) about the Linear Model
- ► Delyon (2015) Advanced course on regression
 https://perso.univ-rennes1.fr/bernard.delyon/regression.pdf

References I

B. Delyon.
Régression, 2015.
https://perso.univ-rennes1.fr/bernard.delyon/
regression.pdf.

- M. Lejeune.
 Statistiques, la théorie et ses applications.
 Springer, 2010.
- W. McKinney.
 Python for Data Analysis: Data Wrangling with Pandas,
 NumPy, and IPython.
 O'Reilly Media, 2012.