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The fixed design model
Model 1

P
yi =05 + Z Orxin + &

k=1
T +1
x; = (1,%1‘71, . ,.’L‘iyp) e RP
i.1.d .
g ' Xe, fori=1,...,n

E(e) = 0, Var(e) = o°

» x; is deterministic

» 02 is called the noise level

Examples

» Physical experiment when the analyst is choosing the design
e.g.,temperature of the experiment

» Some features are not random e.g.,time, location.
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The fixed design Gaussian model

Model 1 with Gaussian noise

p
vi =05+ ), Opain + &
k=1
N

Xz, = (1,.’1,‘1'71,. .. 7xi,p) € Rp+1

& iid./\f(O,UQ), fori=1,...,n

Examples
» Parametric model : specified by the two parameters (8, o)

» Strong assumption
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The random design model

Model 11

P
yi =6+ 2 Orxin + €

k=1
:C;r = (1,.%1'71, - ,xi7p) € Rp+l
(€4, 24) i (g,x), fori=1,...,n

E(e|z) = 0, Var(e|z) = o

Rem: here, the features are modelled as random (they might also

suffer from some noise)
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The ordinary least squares (OLS) estimator

. 2
0c arg min Z (yi — Oy — zp: ekwi,k>

OeRPHL 27 k=1

How to deal with these two models ?
» The estimator is the same for both models
» The mathematics involved are different for each case

» The study of the fixed design case is easier as many closed
formulas are available

» The two models lead to the same estimators of the variance o2

v

Important formula

In both models, whenever X = (z1,...,2z,)" € R**®*+1) has full
rank,

A

6=0"+(X'X)"'X"e
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Bias

Proposition

Under model 1, whenever the matrix X has full rank, the least

squares estimator is unbiased, i.e.,
E(@) = 6"

Proof :
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Quadratic risk
Definition
The quadratic risk is given by
R(6".0) = E|o* — 6|
where | - || is the Euclidean norm

Bias/Variance decomposition

E|6* - 6]* = E|6* —E(6)|” + E|E(§) — 6]

Proof :
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Definition

The quadratic risk is given by

where | - |

Quadratic risk

R(6*,6) =E|0* - 6|
is the Euclidean norm

Bias/Variance decomposition
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Proof :
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Quadratic risk
Definition
The quadratic risk is given by
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Bias/Variance decomposition

Reminder : as the bias vanisAhes when ){ hasAfuII rank,
E|6* — 6|* =E|E(6) — 6]
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The trace of a matrix

Definition
Let A € R™"*™ denote a matrix. The trace of A is the sum of the
diagonal elements of A and is denoted by tr(A) :

tr(A) = Z Aiﬂ'
i=1

Several properties :

» tr(A) = tr(AT)
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The trace of a matrix

Definition
Let A € R™"*™ denote a matrix. The trace of A is the sum of the
diagonal elements of A and is denoted by tr(A) :

tr(A) = Z Aiﬂ'
i=1

Several properties :

>

>

tr(A) = tr(AT)

For any A, B e R™" and a € R,

tr(aA + B) = atr(A) + tr(B) (linearity)
tr(ATA) =30, 2, A7 = IA]I%

For any A, B e R"™", tr(AB) = tr(BA)

tr(PAP~1) = tr(A), hence if A is diagonalisable, the trace is
the sum of the eigenvalues

If H is an orthogonal projector tr(H) = rank(H)
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Estimation risk

Estimation risk R(6*,0) = E|0* — 0|

Under model 1, whenever the matrix X has full rank, we have

R(6",0) =E [(é —6")T (0 - 9*)] = o2 tr (XX)7Y)
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Prediction risk

A

Prediction risk (normalized) Ry.q(6%,0) = E|X0" — y|*/n
Under model 1, whenever the matrix X has full rank, we have

XTX) @ _0*)] _ 2rank(X)

n n

Rpred(0%,0) = E [(é —69)7 (

Because X has full rank, rank(X) = p + 1.

Proof : As before
n Rprea(6",0) =E| (6 - 0")T(XTX)(0 - ")
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Prediction risk

Prediction risk (normalized) Ryeq(0*,0) = E|X6* — §(%/n

Under model 1, whenever the matrix X has full rank, we have
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Because X has full rank, rank(X) = p + 1.
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=EEe'X(XX) ' (XX)(X X)X Te)
(e"TX(X'X)"'XTe)

ﬁ
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Prediction risk (normalized) Ryeq(0*,0) = E|X6* — §(%/n

Under model 1, whenever the matrix X has full rank, we have

Ryred(6%,80) =E [(é — 097" ( - -

Because X has full rank, rank(X) = p + 1.

XTX) (0_0*)] 2 rank(X)

Proof : As before
n- Rpea(6%,0) = E (60— 01T (XTX)(0 - 0")]

E"XXTX)HXTX)(XTX)XTe)

(e"X(XTX)"'XTe)

tr[E(e" Hxe)] = tr[E(e" Hy Hxe)]

tr[E(Hxee Hy)| = tr (HxE(ee' )H)T()

E
E
E

T
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Prediction risk

Prediction risk (normalized) Rpea(6*,8) = E|X60* — §|?/n

Under model 1, whenever the matrix X has full rank, we have

Ryred(6%,80) =E [(é — 097" ( - -

Because X has full rank, rank(X) = p + 1.

XTX) (0_0*)] 2 rank(X)

Proof : As before

n Rprea(6",0) =E| (6 - 0")T(XTX)(0 - ")
=B XX X)X X)X X)X Te)
=EE"X(X'X)1XTe)
]

= tr[E(e"Hxe)] = tr[E(e"HY Hxe)]
tr[E(Hxee"HY)] = tr (HXIE(E&‘T)H)T()
= o2 tr(Hy) = o?rank(Hy) = o2 rank(X)
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Covariance matrix

Covariance of @
Under model 1, whenever the matrix X has full rank, we have

Cov(8) = c?(XTX)™!
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Covariance of @

Under model 1, whenever the matrix X has full rank, we have
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[(
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Covariance matrix

Covariance of @
Under model 1, whenever the matrix X has full rank, we have

Cov(8) = c?(XTX)™!

A

6—E6)(6—EO)| ~E[6-07)0-6|

E [(
=E[(X™X)'XT(X0" +¢) - 0")((X ' X)'X(X0" +¢)—0")7]
E[((
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Covariance matrix

Covariance of @
Under model 1, whenever the matrix X has full rank, we have

Cov(8) = c?(XTX)™!

=(XTX) X T(0?1d,) X (X TX)™!
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Covariance matrix

Covariance of @
Under model 1, whenever the matrix X has full rank, we have

Cov(8) = c?(XTX)™!

A

6—E6)(6—EO)| ~E[6-07)0-6|

=(XTX) X T(0?1d,) X (X TX)™!
=o?(X'Xx)™!

¢
[(XTX) ' XT(X0" +e) —0M)(XTX)'XT(X0* +e)—6")]
[((
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Estimation of the noise level

» An estimator of the noise level o2 is given by

1 A~
Cly - X013

» Another estimator which is unbiased is defined by
1 ~

A2 2
=———|y— X6

o n—rank(X) ”y HZ
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Estimation of the noise level

&2 is unbiased
Under model 1, whenever the matrix X has full rank, we have

E6? = o2

Proof :
ly—y15 =y"(dd, —Hx)y = €' (Id, —Hx)e = tr((Id,, —Hx)ee")
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Heteroscedasticity

Model 1 and Model 11 are homoscedastic models, i.e.,we assume

that the noise level o2 does not depend on z;

Heteroscedastic Model : we allow o2 to change with the
observation ¢, we denote by 03 > () the associated variance

6 € arg min 2 ( — <, xz>) — argmin(y — X0)' Q(y —

OcRr+1 OcRr+1

=1

with Q = diag(%, e G%)
1 n

X0)

Exo: give a closed formula for 6 when X TQX has full rank

Exo: give a necessary and sufficient condition for X TQX to be

invertible
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Gaussian model

Proposition
Under model 1 with Gaussian noise, whenever the matrix X has full
rank, we have

(i) 6 and & are independent random variables
(i) /(8 — 0*) ~ N(0,02(X T X /n)~") for every n
&2 2
- =g _
(i) (n —rank(X)) %= ~ X7 rank(x) for every n
(iv) Let & = (XX /n); 1,
b0

m) ~ 7;L—rank(X)

where T, _rank(x) stands for a student distribution with
n — rank(X) degrees of freedom

“
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Bias and variance

Proposition

Under model 11, whenever the matrix X = (x1,...,%,)" has full
rank, we have
E@|X)=0"

Var(8 | X) = (X"X) 102

Proof : The same as in the case of fixed design with the
conditional expectation

Rem:We cannot compute the E(8) nor Var(f) because the matrix

X has full rank is now random!
Rem:One solution is to rely on asymptotic convergence
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Asymptotics

Asymptotics of @

Under model 11, whenever the covariance matrix cov(X) has full
rank, we have

A

Vn(® - 6*) -5 N (0,028

with § = E[xx ]

Outline of the proof : It could happen that 0 is not uniquely
defined, so we put

0= (X"X)" Xy

where A™ is the generalized inverse of A
» With high probability, we have that X T X is invertible because

XTX _1ym T
S =3 XX, goes to S
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Asymptotics

Outline of the proof :

» As a consequence, in the asymptotics we can replace
(XTX)" by (XTX) ™" (that we shall admit)

Then we use that

o= (52)"(5)

» The term on the right )\(/%E converges to N'(0, E[xx]o?) in
distribution

n

-1
» The term on the left (XT—X) goes to S™! in probability
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Asymptotics

» In the random design model, since closed formulas for the bias
and variance of @ are lacking; Asymptotics is used to validate
the procedure and to build-up the variance estimator

Variance estimation
By the previous Proposition, the variance to estimate is
2a-1
o“S

a natural “Plug-in" estimator is
628"

with 62 = -t |y — X603

n—rank

Rem:It coincides with the estimator in the case of fixed design
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Variance estimation

Noise level is conditionally unbiased

Under model 11, whenever the matrix X = (x1,...,%,)" has full

rank, we have
E(5% | X) = o?

Exo: Write the proof

Convergence of the variance estimator

Under model 11, if the covariance matrix cov(X) has full rank, we

have
52 ;br o281

in probability
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Qualitative variables

A variable is qualitative, when its state space is discrete
(non-necessarily numeric)

Exemple : colors, gender, cities, etc.

Classically : “One-hot encoder” consists in representing a
qualitative variable with several dummy variables (valued in {0, 1})

If each x; is valued in a1, ...,ax, we define the following K
explanatory variables : Vk € [1, K], 1,, € R" is given by

1, if Ty = ag

Vie[l,n], (1,,)i= {

0, else
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Examples

Binary case : M/F, yes/no, | like it/l don't.
Client | Gender
1 H
2 F .
3 H
4 F
5 F

General case :

colors, cities, etc.

Client

Colors

Blue

Blanc

Red

Red

OB WIN -

Blue

F

0

1

0

1

1

Blue Blanc
1 0
0 1
0 0
0 0
1 0

cor o~

Red

O = = OO
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Somme difficulties

Correlations : 25:1 1,, = 1, ! We can drop-off one modality
(e.g.,drop_first=True dans get_dummies de pandas)

Without intercept, with all modalities : X = [1,,,...,14,]. If

Tny1 = ag then g1 = 0y

With intercept, with one less modality : X = [1,,, 14y, ..., Loy,
dropping-off the first modality

0o, ifk=1
90 + 9k, else

If Zp41 = ag then gn11 = {

Rem: might give null column in Cross-Validation (if a modality is
not present in a CV-fold)
Rem: penalization might help (e.g.,Lasso, Ridge)

Exo: Compute the OLS for X = [1,,,...,1,, ] € RP*K
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What if n <p?

Many of the things presented before need to be adapted

For instance : if rank(X) = n, then Hx = Id,, and § = X8 = y!
The vector space generated by the columns [xg,...,x,] is R",
making the observed signal and predicted signal are identical

Rem: typical kind of problem in large dimension (when p is large)

Possible solution : variable selection, cf.Lasso and greedy methods
(coming soon)
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Web sites and books

Python Packages for OLS :

statsmodels
sklearn.linear_model.LinearRegression
McKinney (2012) about python for statistics
Lejeune (2010) about the Linear Model
Delyon (2015) Advanced course on regression

https://perso.univ-rennesl.fr/bernard.delyon/regression.pdf
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http://statsmodels.sourceforge.net/devel/examples/notebooks/generated/ols.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://perso.univ-rennes1.fr/bernard.delyon/regression.pdf

References |

» B. Delyon.
Régression, 2015.
https://perso.univ-rennesl.fr/bernard.delyon/
regression.pdf.

» M. Lejeune.
Statistiques, la théorie et ses applications.
Springer, 2010.

» W. McKinney.
Python for Data Analysis : Data Wrangling with Pandas,
NumPy, and IPython.
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