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Dataset / point clouds and statistics

In this part we follow the concepts introduced by Donoho!?: we
right X = [x1,...,2,] € RP*™ for the “cloud” of points
representing n points in the space RP.

A statistic T is a (measurable) function from RP*" to RF'.
We write T when the dependence on n is needed; we also use
the notation T'(z1,...,x,) = T(X) whenever needed.

Rem: often p’ =p

Rem: notation different from standard design matrix (transposed)

ID. L. Donoho. “Breakdown properties of multivariate location estimators”. PhD thesis. Harvard University,
1982.

2D. L. Donoho and M. Gasko. “Breakdown properties of location estimates based on halfspace depth and
projected outlyingness”. In: Ann. Statist. 20.4 (1992), pp. 1803-1827.
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Transformations / invariance

For a permutation 7 € &,, we write:
relabeling . 7T(X) = [:Eﬂ(l), . ,xﬂ(n)]

Targeted property: Permutation invariance
Vr e 6, T(n(X)) =T(X)
Interpretation: labeling should not matter to summarize a dataset

» Examples: mean, median, trimmed means, etc.

» Counter-example: e.g., the first/last point (z1 or x,)
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Translation

For a vector ;1 € RP and a dataset X we write:

Translation : X +pu=[z1+p,...,z, + Y
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Translation equivariance

A statistic T is said translation equivariant if it satisfies:
for any vector u € RP, and any dataset X the following holds

T(X 4 p) =T(X) + p
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Translation equivariance (bis)

» Examples: mean, median, trimmed means, etc.

» Counter-example: shrinkage estimators, e.g., James-Stein
estimator (n =1,p > 2)

. —2)0? —2)0?
g = <1 — 7@ )20 ) 1, 0r (1 — 7(13 )20 ) 1
1] [E3Y

or extension with n observations:

_9\22 _9\22
fyg= (1_(17 )2">:1:n or (1_(1) )2"> T,
[[Zn| [Znll™ /4

Rem: James-Stein useful when estimating the mean of i.i.d.
Gaussian with variance ¢
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Location estimator

\Definition: location estimator\

A statistics T is a location estimator if it is both
» permutation invariant

» translation equivariant

Example :
» the empirical mean T'(X) = T(x1,...,2n) = T,
» more generally if T is linear, it is translation equivariant

> we will see that any M-estimator is translation equivariant



Affine transformation

For a vector 1 € RP and a nonsingular matrix ¥ € RP*P and a
dataset X we write:

Affine transformation® : XX + yu = [Sz1 + p, ..., Xz, +

3there is an abuse of notation as the matrix size do not match...
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Affine equivariance

A statistic T is said affine equivariant if it satisfies:
For any nonsingular matrix ¥ € RP*P, for any vector i € RP and
for any dataset X the following holds:

T(SX + p) = ST(X) + p
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Affine equivariance (bis)

A case of interest is the case: y =0 and X is diagonal with with
positive elements:

o1
n—
Op

This corresponds to scale equivariance, i.e., the statistics should be
equivariant w.r.t. change of unit (e.g., kilometers vs miles)
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Breakpoint: history

A geometrical concept, though
» introduced by Hampel* in a probabilist framework
» the proposed formulation was provided by Donoho®;

» another variant is provided in Maronna et al. (2006)

Donoho: “Imagine contaminating your dataset; how extensively
must you contaminate it in order to make your estimator
misbehave arbitrarily”

4F. R. Hampel. “Contributions to the theory of robust estimation”. PhD thesis. University of California
Berkeley, 1968.

5D. L. Donoho. “Breakdown properties of multivariate location estimators”. PhD thesis. Harvard University,

1982.
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Merge dataset

Notation:
» X is a dataset of size n, X = [z1,...,x,] € RPX"

» Y is a dataset of size m, Y = [y1,...,ym| € RP*™

The merged dataset, of size n + m is written X UY and is the
concatenation of X and Y:

XUY = ['Tla"'a'xnvyla--'vym] GR(n+m)Xp

15/35



Breakdown point: Donoho’s definition

‘Definition: Breakdown point‘

For a dataset X of size n, the breakdown point of a statistic T is:

*

& = eNT, X) = 2
n + m*
where
m* = min {m cosup | T(XUY)-T(X)| = +OO}
#Y=m

Rem: coined e-contamination in Huber and Ronchetti (2009)

Rem: e-replacement variant, cf. Maronna et al. (2006),Huber and
Ronchetti (2009) consists in arbitrary corrupting some points from
the dataset (not adding some more)
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Remarks and first properties

e* = %,m* = min {m: sup |[T(XUY)-T(X)| = +oo}
#Y=m

» &* =¢&*(T, X): depends both on the statistic 7' and on the
dataset X (but not so much on the later)

» m*,e* do not depend on the norm chosen (proof: equivalence
of norm in Euclidean spaces)

» Vu € RP, Y € RP*P(nonsingular), e*(T, XX + u) = &*(T, X)
when T is affine equivariant (blackboard)
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Lower bound

1
(T, X)) > ——
(T, )_n—i—l’

moreover this value is attained for the empirical mean
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Lower bound

1
(T, X)) > ——
E(’)_n—i—l’

moreover this value is attained for the empirical mean
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+ nx. _
T(x1,. s xn,y1) — T(x1,...,20) = y%;;ffﬁr——xn
1 n _ _
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n+1 n+1

18/35



Lower bound

1
(T, X)) > ——
(T, )_n—i—l’

moreover this value is attained for the empirical mean

Proof: Let T'(x1,...,x,) = T,. Hence,
1+ nx _
T(xl,...,xn,yl)—T(xl,...,xn):ynfln— "
_ no_
_n+1+n+1x" n
Y1 1 _

n—+1 n—i—lx

18/35



Lower bound

1
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Proof: Let T'(x1,...,x,) = T,. Hence,
1+ nx _
T(wl,...,xn,yl)—T(xl,...,xn):ynfln— "
_ no_
_n+1+n+1x" n
Y1 1 _

n—+1 n—i—lx

So, || T(x1,.- s xn,y1) — T(x1,...,¢0)|| > — — ——
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Lower bound

1
(T, X)) > ——
(T, )_n—i—l’

moreover this value is attained for the empirical mean

Proof: Let T'(x1,...,x,) = Tp. Hence,
1+nT B
T(xl,...,xn,yl)—T(xl,,,,jxn):ynfln_ -
_ U n =
e T L
__n 1 -
n+l n+1""
1 .
SO; ||T(x17"'7$n7y1) —T(xl,,xn)H > n‘:i_Hl — 7!’—:"1

Taking the sup over all y; € RP leads to the conclusion.
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Upper bound

e"(T,X) <1,

moreover this value is attained for constant estimators, say T' = 0
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Upper bound

e"(T,X) <1,

moreover this value is attained for constant estimators, say T' = 0

Proof: Let T'(x1,...,xy,) = 0.
Hence,
T(x1y. . Tny Y1y Ym) — Lz, ..oy 2n) = 0,Ym

O

So m* = 400 and e*(T, X) = 1.
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Refined upper bound: translation invariance

Whenever T is translation equivariant the following holds:

e"(T,X) <

N

Interpretation 1: if one adds more contaminated points than the
number of points already present, the estimator should break down

Interpretation 2: if more than half a dataset if phony, the “good”
data must look like outliers contaminating the phony data!
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Proof adapted from Donoho (1982)

Assume that the following holds:
Sup IT(XUY) -T(X)[| = o0 (%)

Then,
m” 1= min {m :osup [|[T(XUY)-T(X)| = +OO} <n.
#Y=m

Next,

*
N m n 1

m*+n_ n—4+n 2

holds true as z — _1 is a non-decreasing function.
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Proof adapted from Donoho (1982) (bis)

ab absurdum: if (x) does not hold, there exists B such that
sup |[T(XUY)-T(X)||<B
#Y=n

A w o e
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Proof adapted from Donoho (1982) (bis)

ab absurdum: if (x) does not hold, there exists B such that
sup |[T(XUY)-T(X)||<B
#Y=n

Let 1 € RP such that ||u|| = 3B, then
1
IT(X +pl U X) = T(X + p)l| = [T(X U[X = p]) = T(X)]

LT is translation equivariant
2

3
4

22 /35



Proof adapted from Donoho (1982) (bis)

ab absurdum: if (x) does not hold, there exists B such that
sup |[T(XUY)-T(X)||<B
#Y=n

Let 1 € RP such that ||u|| = 3B, then
2

IT(X + p]U X) = T(X + ) - IT(X VX —p) -T(X)| <B.

LT is translation equivariant

2use #[X — p] = n and ab absurdum hypothesis
3

4

22 /35



Proof adapted from Donoho (1982) (bis)

ab absurdum: if (x) does not hold, there exists B such that
sup |[T(XUY)-T(X)||<B
#Y=n

Let 1 € RP such that ||u|| = 3B, then
2

IT(X + p]U X) = T(X + ) - IT(X VX —p) -T(X)| <B.

Moreover,
3

IT(X VX +p) =T 2 T(X + p]) - TX)]
—IT(X +plU X) = T(X +

LT is translation equivariant
2use #[X — p] = n and ab absurdum hypothesis

3triangle inequality
4

22 /35



Proof adapted from Donoho (1982) (bis)
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Proof adapted from Donoho (1982) (bis)

ab absurdum: if (x) does not hold, there exists B such that
sup |[T(XUY)-T(X)||<B
#Y=n

Let 1 € RP such that ||u|| = 3B, then
2

IT(X + 6] U X) = T(X + )| = [T(X U[X = ) — T(X)]| < B.

Moreover,
3

> T([X + p]) = T(X)
—IT(X +plU X) = T(X +
>|[T(X + p]) - T(X)|| - B

IT(X VX +pl) = T(X)|

4
=l =B =2B
>B (contradiction) [J

LT is translation equivariant
2use #[X — p] = n and ab absurdum hypothesis
3triangle inequality

4T is translation equivariant
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Median in dimension 1 (p = 1)

The (1D) median T'(X) = Med,,(X) achieves the best possible

breakdown point value for a location parameter :

1
5*(T,X) - 5

Reminder: the definition of “a” median is

Med,,(X) € argminz |6 — ;]

23 /35



Median properties

Property (1)

Any median Med,,(X) satisfies:
#{i e [n]:x; <Med,(X)} < #{i € [n]:a;
#{icn]:x; >Med,(X)} <#{i€n]:xz

Proof. will be given in the “sub-gradient” lesson

Rem: beware that
#{i € [n]:x; <Med,(X)} ##{i € [n] : z; > Med,(X)}
Take for instance X = (1,2,2,3,3), so that Med,,(X) = 2 and

#{ie€n|:x; <Med,(X)} =3<#{i€n]:z;>Med,(X)} =4
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Median properties (l1)

Corrollary

Any median Med,,(X) satisfies:
#{i € [n] : x; < Med,(X)

#{i € [n] : x; > Med,(X)

Proof. simply remark the two following points

#{i e [n]:x; <Med,(X)} +#{i € [n]: x;
#{ie€n]:x; >Med,(X)} +#{i € [n]: 2

25/35



Proof (Median optimality)

N[ —

Fact 1: Med,,(X) is translation equivariant so ¢* <
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Proof (Median optimality)

Fact 1: Med,,(X) is translation equivariant so ¢* < %
Proof. Let p € R and X + = [x1 + i, ..., xn + p|. Then,

n
Med,, (X + p) € arg minz |0 — (x; + p)|
1S3 —

Noticing that for any function f:
argmin f(v) + p = argmin f(§ — p)
veR oeR

we get that Med,, (X + p) = Med,(X) + O
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Proof (Median optimality)

Fact 1: Med,,(X) is translation equivariant so ¢* < %
Proof. Let p € R and X + = [x1 + i, ..., xn + p|. Then,

n
Med,, (X + p) € arg minz |0 — (x; + p)|
1S3 —

Noticing that for any function f:
argmin f(v) + p = argmin f(§ — p)
veR oeR

we get that Med,, (X + p) = Med,(X) + O

Partial conclusion: we only need to show ¢* > L je, m* >n
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Proof (1)

Fact 2: To show that m™ > n, it is sufficient to have

sup |Medz,—1 (X UY) —Med,(X)| < co.
#Y=n—1

Proof. simply remind that

e* = nf’%,m* = min {m :osup |T(XUY)-T(X)| = +oo}
#Y=m

O

We will now prove that:

sup | Medz,—1(X UY) — Med,,(X)| <z, — (1) < +00
#Y=n—1

where the dataset X has been ordered s.t. z(;) < - < z(,)
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Proof (I11)

Fact 3:
Let Y be arbitrary s.t. #Y =n—1, Z:= X UY = [21,..., 22n1]
for any t € R,

#{ie2n—1]: 2z >t} > n = Meds,-1(Z)

t
#{ie2n—1]:2; <t} >n= Medy,—1(Z) <t

>
<

Proof (ab absurdum): we show only the first point, the second is
proved similarly. If M < t then one has

n<#{ic2n—1]: 2z >t}
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Proof (111)

Fact 3:
Let Y be arbitrary s.t. #Y =n—1, Z:= X UY = [21,..., 22n1]
for any t € R,
#{ie2n—1]:2z; >t} >n = Medy,—1(Z) >t
#{ie2n—1]:2 <t} >n= Meds,—1(Z) <t
Proof (ab absurdum): we show only the first point, the second is
proved similarly. If M < t then one has

1 2

n<HliCn—1]:m >t} <H{ic2n-1]:5> M} < 1

2

Tuse M < t

2apply last corollary to the z;'s
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Proof (1V)

Fact 4: Let us order X so that ) < STy, then

Medz,—1(2) € [2(1), Z(n)]
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Proof (1V)

Fact 4: Let us order X so that ) < STy, then
Medzn_l(Z) S [x(l),x(n)]

Proof. one can check that
{za), - amt C{zitz 2 am}
hence
#lie2n—1]:2 > 2q)} > n.
We can apply Fact 3 so that:
Medgn_l(X U Y) = Medgn_l(Z) > Z(1)
MedQn_l(X U Y) = Medgn_l(Z) < Z(n) L]
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Proof (1V)

Fact 4: Let us order X so that ) < STy, then

Medzn—1(Z) € [(1), T(n)]
Proof. one can check that
{JI(l), e ,:L’(n)} C {Zi 1z 2> :B(l)}
hence
#{Z S [277, — 1] 1z 2 JI(l)}
We can apply Fact 3 so that:
Medg,—1(X UY) = Medg,—1(Z) >
Meds,—1 (X UY) = Medgn_l(Z) <

v
3

Finally,

sup | Meda,—1(X UY) — Med,,(X)| < 2,y — x(1) < 400
#Y=n—1

and this conclude the proof using Fact 2.
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Geometric median
A (Euclidean) geometric median is defined by:

n
Med,,(X) € argmin Y _ |lv — z;,

veRP =1
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Geometric median
A (Euclidean) geometric median is defined by:
Med,,(X) € argmin Y _ |lv — z;,

veRP =1

» Translation equivariant: T'(X + pu) = T(X) 4+ p, Vi € RP

Hint: use argmin f(v) = argmin f(v/ — pu) — p
veER v'eR

» Orthogonally equivariant: T'(XX) = £T'(X) for any matrix
3 € RP*P such that 'Y = Id,,

Hint: use argmin f(v) = X~ argmin f(X 1)
veR v'eR

» But not affine equivariant (except in 1D):

n n
Sy - Zailly = 3\ (E v - 2) TSTE(E 1w - a)
i=1 i=1

Med,,(£X) = Sargmin y \/(V’ —z) TSI — ;)

v'eRP i=1

30/35



Breakdown Point of Geometric Median®

The geometric median 7'(X ) = Med,,(X) achieves the best
possible breakdown point value for a translation equivariant:

1
8*(T,X) == 5

Proof. By translation equivariance, we can assume that
Med,,(X) = 0, and writing Z = [z1,...,22n-1] = X UY for
#Y =n — 1, it is then sufficient to show:

sup | Meda,—1(Z2)| < oc.
#Y=n—1

5H. P. Lopuhai and P. J. Rousseeuw. “Breakdown Points of Affine Equivariant Estimators of Multivariate
Location and Covariance Matrices”. In: Ann. Statist. 19.1 (1991), pp. 229-248.
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Proof (1)
Let M = max ||zill, and B(0,2M) be the (Euclidean) ball of

center 0 and radius M.
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1
for some y* € B(0,2M). Hence, d > |[Meda,—1(2)|| — |ly*||, so:

[Medan—1(Z)|| < lly*|| +d < 2M +d. (%)

1triangle inequality
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Proof (1)
Let M = max ||zill, and B(0,2M) be the (Euclidean) ball of

center 0 and radius M.
Let d be the distance between Meds,,—1(Z) and B(0,2M),i.e.,

d:= i — Medy,,—1(Z)|| = ||ly* — Meda,—1(Z
b I Mol =7 Mot

1
for some y* € B(0,2M). Hence, d > |[Meda,—1(2)|| — |ly*||, so:

[Medan—1(Z)|| < lly*|| +d < 2M +d. (%)
1
Now, Vi € [n — 1], [lyi — Medan—1(2)|| = [lyill — [[Med2n—1(Z)]],

SO

lyi = Medgn—1(2)]| = [lyill —2M —d (%)

1triangle inequality
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Proof (1)

-----

using the figure one can claim that

Vi € [n], HIL’Z - Medgn_1(Z)H >M+d
Vi€ [n], |[lzi — Medan—1(2)|| = [lzi] +d (% % %)

I\Iedgn,l (Z)

B(0,2M)
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Proof (I11)

vien =1, [y —Medg1(2)| = |lyill —2M —d (%)
Vienl, |z — Medsn 1(Z)] > il +d (54%)
Summing (*x) and (x % %)

2n—1 2n—1

Sz — Meday 1(Z2)] = 3 [l = @M + d)(n — 1) + nd
i=1 i=1
2n—1

= Z |zi|| +d —2M(n — 1)

i=1

Now if d — 2M(n — 1) > 0 then 0 would achieve a smaller
objective value than Meds,,—1(Z), leading to a contradiction.
Hence, d < 2M(n — 1) and reminding (*):

*)
IMeda,—1(Z2)|| < 2M +d < 2nM < oo
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