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Reminder on (Ordinary) Least squares, (O)LS

Model:
y ~ X" where y € R", X € R"*P, B* € RP (true coefficient)

A least square estimator is any solution of the following problem:

N 1
B € argmin _ly - XB|3 = f(B)
BERP
n

B € argminéz lyi — (3%6”2

BERP i=1

Rem: Gaussian (-log)-likelihood leads to square formulation
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Least Absolute Deviation (LAD)

B € argmin|ly — X 8|1 := f(8)
perr

B €argmin_ |y; — (x;, B)|

BERP  —1
Many properties, see Bloomfield and Steiger (1983) for instance

for historical purspose
When p = 1, the estimator is

n
B c argminz lyi — i B
BeER i

and one can find a solution with zero residuals, i.e., y;, = x;, 8



Proof

First, one can simplify the problems to cases without any x; = 0 by
noticing that

Z|yz'—l’iﬂ|2 Z lyi — i8] + Z |vi
=1

1:2;7#0 i:x;=0

Second, we assume “ab absurdum” that no solution achieves zero
residuals. Ordering the slopes % < --- < 2 one can assume that
n

e ; iefiace 7 e Y Yip
B, a LAD solution satisfies: ¢ € [n] s.t. B € (x%, x)

i+1
By Fermat's rule and hypothesis: Z |z;| = Z | ;]
’Lﬁ>% ZB<%

One can check that B = % also satisfies the first order condition:

6
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LAD in any dimension

There exist at least one solution ,8 of the LAD for which
yi = (x;, B) for at least rank(X) indices.
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LAD in any dimension

There exist at least one solution B of the LAD for which
yi = (x;, B) for at least rank(X) indices.

Proof: this is provided in Th.1, Bloomfield and Steiger (1983). It
works “ab absurdum”: then there exist § s.t. (0, z;) = 0 for
indices with y; = (z;, 8) and (J, ;) # 0 for indices with
yi # (x;, B), then the objective is
Yooy (B @) —t(5, zi)
dyi#( i, B)

for the point B + td. With the previous lemma, one can create one
more point that zeros the residual. This can be repeated except if
one reaches rank(X) indices.
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Regression equivariance

Let T be an estimator of 3" (regression coeff.) based on
Z=(X.y)

We say that T is regression equivariant when for any dataset
(y, X) and any vector v € RP, one has

T(X,y+ Xv)=T(X,y) +v

Rem: a simple case is the OLS (full rank case)

XTX) "' XT(y+Xo)=( X"X) ' XTy+0
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Scale equivariance

Let T be an estimator of 3" (regression coeff.) based on
Z=(X.y)

We say that T is scale equivariant when for any dataset (y, X)
and any vector ¢ € R, one has

T(X,c-y)=c-T(X,y)

Rem: a simple case is the OLS (full rank case)

(XTX)IX T (ey) = e(XTX)1X Ty
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Affine equivariance

Let T be an estimator of 3" (regression coeff.) based on
Z=(X.y)

We say that T is affine equivariant when for any dataset (y, X)
and any non-singular matrix A € RP*P, one has

T(XAy)=A'T(X,y)

Rem: a simple case is the OLS (full rank case)

(ATXTXA)THA) X (y) =47 H(XTX) X Ty
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LTS Definition

For h € [n], the Least Trimmed Squares (LTS) estimator of
order h is defined by

h

R ‘ .
Be Arg nin ;(T (B))in,

where the vector r2(8) = ((y1 — (z1, B))% .-+, (Yn — (@0, B))?)
represent the square residuals and (72(8))1., < - < (r2(8))nin
are the ordered statistics of the squared residuals

Rem: when h < p, LTS not uniquely defined
Rem: when h = n, LTS reduces to standard OLS
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Alternative formulations

Set formulation: For H C [n], we write
QUH,B) = | XuB = yul’ = Sicn(vi — (B, x:))* then

(B, H) e argmin Q(H,B)
HC[n]:#H=h
BERP
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Alternative formulations

Set formulation: For H C [n], we write
QUH,B) = | XuB = yul’ = Sicn(vi — (B, x:))* then

(B, H) e argmin Q(H,B)
HC[n]:#H=h
BERP

Binary variables formulation:

(B,w) € argmin Zwl yi — (B, z:))?
BERP
wCR™
Vi€[n],w;€{0,1}

and Z wl_

Rem: the later formulation is called a Mixed Integer
Programming problem. Convex relaxation can be obtained by
substituting w; € [0, 1] to w; € {0, 1}, or optimization solver (like
mosek, gurobi, etc.) can be considered.
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Equivariance

The LTS estimator is regression, scale and affine equivariant

Proof: consider the case where the data is y + Xv. Fix H € [n], as
the optimal values in the LTS definition:

BearggninZ(yiHv, zi) = (B, z:))?

1€H
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Equivariance

The LTS estimator is regression, scale and affine equivariant

Proof: consider the case where the data is y + Xv. Fix H € [n], as
the optimal values in the LTS definition:

BearggninZ(yiHv, zi) = (B, z:))?

i€H
€argmin » (yi — (B —v, 2;))>
B ien
ev—l—argmlnz — (B, z;))?
B 1€H
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Breakdown point: Donoho’s definition

‘Definition: Breakdown point‘

For a dataset Z = (X,y) where X € R"*P corresponds to the
design matrix and y € R" to the observation vector, the
breakdown point of a statistic 7 is:

*

e*=e"T,7) = m
n+m*
where
m* = min {m : sup [|[T(Z2uZ)-T(Z)| = —|—oo}
#7Z'=m

Rem: e-replacement variants often considered, see proof in
Rousseeuw and Leroy (1987)
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Breakdown point!:?

For simplicity we assume a classical full rank design assumption (so
p<n).

The breakdown point of any regression and permutation

equivariant estimator is less than or equal to %.

Rem: Asymptotically this is about a 50% breakdown point.

1P, J. Rousseeuw and A. M. Leroy. Robust regression and outlier detection. \Wiley Series in Probability and
Mathematical Statistics: Applied Probability and Statistics. New York: John Wiley & Sons Inc., 1987, pp. xvi+329.
2D. L. Donoho. “Breakdown properties of multivariate location estimators”. PhD thesis. Harvard University,
1982.
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Proof

ab absurdum: assume 3B s.t.

Supyz1—n_pi1 IT(Z' U Z) = T(Z)|| < B

Up to a samples reordering, because p — 1 vectors extracted among
the row of X are included in a hyperplane, 9 € RP, with p # 0,

st (p,z)=-=(p,xp-1)=0.
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xy, 1
Tp—1, Yp—1
Lps Yp
zZuz'=| :
Tn, Yn
xp7 yp + </J,7 xp)

LTn,s yn+</~L7xn>

18 /32



ab absurdum: assume 3B s.t.

SUpy 7 pi1 IIT(Z'UZ) ~ T(Z)] < B

Up to a samples reordering, because p — 1 vectors extracted among
the row of X are included in a hyperplane, 3y € RP, with u # 0,

st. (p,z1)=---=(p,xp—1)=0. Consider:

ZUZ' =

Yp + (1, zp)

Yn + {1, p)

1, y1+(p, z1)

Tp—1, Yp—1 + <,u7 :L‘p71>

Lps Yp
L, Yn
Tp, Yp + <Ma xp>
Ty Yn + <Na xn)
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Proof (continued)

So by regression equivariance, reminding Z = (X,y)

X1, Y1 + <,LL, T >
Tp—1, Yp—1+ (p, Tp_1)
Lp, Yp

T .
T, Yn
xp7 yp+ <:u7 xp>
Tn,s Yn + <Ha xn)

€,

Tp—1,
Tp,

T,

1

Yp—1
Yp — <M7 xp>

Yn

+p

and then T(Z U Z") =T(Z U Z") + p for another dataset Z” of

sizen—p+1
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Proof ending

By hypothesis: ||[T(Z U Z") — T(Z)|| < B, but now one has also

IT(zU2) - T(2)| = |T(Z 02" + i~ T(2)

But Z” being of size n — p + 1, then one has :
[Tz 7" - T(2)| < B

Since ||p|| can be made arbitrarily large, leading to a contradiction.
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Breakdown point3'*

The (e-contamination) breakdown point of the LTS is . When
h =n —p+ 1, this reaches the largest bound for regressmn

equivariant estimators, i.e., 271%:;11

Rem: when n is large w.r.t. to p this is approximately 50%

3P. J. Rousseeuw and A. M. Leroy. Robust regression and outlier detection. \Wiley Series in Probability and

Mathematical Statistics: Applied Probability and Statistics. New York: John Wiley & Sons Inc., 1987, pp. xvi+329.

4D. L. Donoho. “Breakdown properties of multivariate location estimators”. PhD thesis. Harvard University,
1982.
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Proof

Let Z' = Z U Z the dataset, where one has added the h corrupted
elements (Z1,%1), ... (Zn,Yn) (pick h =n —p+ 1 to reach
optimum)



Proof

Let Z' = Z U Z the dataset, where one has added the h corrupted
elements (Z1,%1), ... (Zn,Yn) (pick h =n —p+ 1 to reach
optimum)

To simplify the proof, we prove the lower bound for the Ridge
version of the LTS estimator only:

(B,H)= argmin Q(H,B)+ \|B|”
BERP H:#H=h

where Q(H,B) = XuB —yul’ =Y (i — (B, a}))?

i€H

N
N

S



Proof continued

This means that for the Ridge version of the LTS, we prove that
when one modifies h (or less) samples the estimator remains
bounded.
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Proof continued

This means that for the Ridge version of the LTS, we prove that
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Proof continued

This means that for the Ridge version of the LTS, we prove that
when one modifies h (or less) samples the estimator remains
bounded.

* — <
Q(H",0)= min QH Zym R 1Yl oo
Assume that || 3] > % then
1+hyl N
min QUEB)+ X812 2 A1 2 A1~ g0

Now since ming g.4m=pr Q(H, B) < Q(H*,0), one needs to have

< % a bound that does not depend on the Z;,5; [

A

B
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Optimization for LTS :
Mixed Integer Programming

Generic approach; requires fast solvers like gurobi, mosek, cplex,

etc.
Ingredients:

» Convex relaxation : convexify the binary constraints

P = gé}l&? Z U]Z Yi ,3 €Ty >)
wCR"”
Vie[n],w;€{0,1}

and Z wl—

» If a solution @ of P has integer values stop: the global
optimal solution has been found

Rem: P“¥* < P (lower bound on the optimal value)
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Branch and bound

Otherwise: “branch and bound”, Jip € [n] such that w;, €]0,1[ so
solve two MIP problems:

P, = min sz Yi /6 xZ>) P, = min sz Yi ’6 1’Z>)

RP RP
581&" =1 581{” =1
Vi€[n],w;€{0,1} Vie[n],w;€{0,1}
n n
=1 Wi=h =1 Wi=h
IU,‘,[):O wi[)zl

The variable i is called a branching variable
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Branch and bound

Otherwise: “branch and bound”, Jip € [n] such that w;, €]0,1[ so
solve two MIP problems:

P = érel%lg’ sz Yi IB xz)) P, = min sz Yi /3 xz>)

RP
wCR™ i=1 uﬁng” =1
Vi€[n],w;€{0,1} Vie[n],w;€{0,1}
n n
=1 Wi=h =1 Wi=h
wi,=0 wip=1

The variable i is called a branching variable

Now one has P = min(F}, P.), and one can solve recursively the
problems P, and P, by proceeding similarly (use a search tree,
and in general no need to solve the 2" sub-problems)
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Branch and bound

Otherwise: “branch and bound”, Jip € [n] such that w;, €]0,1[ so
solve two MIP problems:

P, = min sz Yi IB xZ>) P, = min sz Yi ’8 1’Z>)

RP RP
5§Rn i=1 {ngn =1
Vi€[n],w;€{0,1} Vie[n],w;€{0,1}
n n
=1 Wi=h =1 Wi=h
wi,=0 wip=1

The variable i is called a branching variable

Now one has P = min(F}, P.), and one can solve recursively the
problems P, and P, by proceeding similarly (use a search tree,
and in general no need to solve the 2" sub-problems)

Rem: other useful bounds are P* < min(Pf"*, PSY*) < P

Rem: upper bounds can be obtained by finding feasible points
(e.g., rounding)
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Fast LTS

Simple alternative: iterative procedure Rousseeuw and Van
Driessen(2006)

Algorithm: FasT LTS

input : A, max. iterations t,,x, Stopping criterion ¢
init  : HO, B°

for 1 <t < tmax do

Break if stopping criterion smaller than ¢

2
H'™! « argmin HXHBt — yHH
H:#H=h

B — argmin || X 18 — y e ||
B

return B¢, H!




Fast LTS

Simple alternative: iterative procedure Rousseeuw and Van
Driessen(2006)

Algorithm: FasT LTS

input : A, max. iterations t,,x, Stopping criterion ¢
init  : HO, B°

for 1 <t < tmax do

Break if stopping criterion smaller than ¢

2
H'™! « argmin HXHBt — yHH
H:#H=h

B — argmin || X 18 — y e ||
B

return B¢, H!

Rem: Q(H™!, 8™ < Q(H", B") < Q(H', B")



Another simpler alternative : Fast LTS

the update
H'™! « argmin HXH,Bt — yHH2
H:#H=h

can be obtained in a closed form by sorting; cost=
O(nlog(n)) or less if h is small (use: np.partition in
numpy)
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solve too precisely the problem at each step
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Another simpler alternative : Fast LTS

the update
H'™! « argmin HXH,Bt — yHH2
H:#H=h

can be obtained in a closed form by sorting; cost=
O(nlog(n)) or less if h is small (use: np.partition in
numpy)

inner solver needed for the second update:
B« argmin || X i1 8 — y i ||2
B

A second stopping criteria is then needed; possibly do not
solve too precisely the problem at each step

initialization is tricky (e.g., similar to K-means issues), might
use several initialization
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Summary on optimizing LTS

2 directions:

» Mixed Integer Programming

» pros: bounds / certificate for optimality

» cons: more complex to implement, need of specific solvers
> Alternate minimization

» pros: simple to implement
» cons: initialization, no guarantee (only convergence to local
minimum)

Rem: hybrid method could be useful, as MIP can benefit from a
nicer initialization (through nicer upper bounds)

Rem: “continuation” method can also be proposed, i.e., start by
small h (fast to solve) and then increase h progressively



LTS extensions through regularization®

Adapt to high dimensional constraints using regularization:

(B,H) € argmin Q(H,B)+ hipen(B)
HC[;}!%H:}L
c 4

where Q(H,B) = [|XuB — yul® = Sicu(yi — (B, :))?
» Ridge penalty (as seen earlier): pen(8) = HBH2
» Lasso penalty for sparsity enforcing: pen(3) = ||3]|;
> etc.

Rem: such approaches loose regression equivariance by enforcing
specific constraints on the targeted solution (e.g., sparsity)

5A. Alfons, C. Croux, and S. Gelper. “Sparse least trimmed squares regression for analyzing high-dimensional
large data sets”. In: Ann. Appl. Stat. 7.1 (2013), pp. 226-248.
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References and supplementary material

» For extensions to joint estimation of 5 and noise level o cf.
Ch. 6, Maronna et al. (2006)

Example : consider for B being the LTS

» Heteroscedastic models (case where the noise level differs for
each observations) Ch. 6, Maronna et al. (2006)

» branch and bound:
https://web.stanford.edu/class/ee3920/bb.pdf
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