
STAT 593
Robustness and Linear Models

Joseph Salmon
http://josephsalmon.eu

Télécom Paristech, Institut Mines-Télécom
&

University of Washington, Department of Statistics
(Visiting Assistant Professor)

1 / 32

http://josephsalmon.eu

Outline

Least Absolute Deviation

Equivariance

Least Trimmed Squares (LTS)

2 / 32

Table of Contents

Least Absolute Deviation

Equivariance

Least Trimmed Squares (LTS)

3 / 32

Reminder on (Ordinary) Least squares, (O)LS

Model:
y ≈ Xβ∗ where y ∈ Rn, X ∈ Rn×p,β∗ ∈ Rp (true coefficient)

A least square estimator is any solution of the following problem:

β̂ ∈ arg min
β∈Rp

1
2‖y−Xβ‖22 := f(β)

β̂ ∈ arg min
β∈Rp

1
2

n∑
i=1

[
yi − 〈xi,β〉

]2

Rem: Gaussian (-log)-likelihood leads to square formulation

4 / 32

Least Absolute Deviation (LAD)

β̂ ∈ arg min
β∈Rp

‖y−Xβ‖1 := f(β)

β̂ ∈ arg min
β∈Rp

n∑
i=1

∣∣yi − 〈xi,β〉∣∣
Many properties, see Bloomfield and Steiger (1983) for instance
for historical purspose
When p = 1, the estimator is

β̂ ∈ arg min
β∈R

n∑
i=1

∣∣yi − xiβ∣∣
and one can find a solution with zero residuals, i.e., yi0 = xi0β

5 / 32

Proof
First, one can simplify the problems to cases without any xi = 0 by
noticing that

n∑
i=1

∣∣yi − xiβ∣∣ ≥ ∑
i:xi 6=0

∣∣yi − xiβ∣∣+ ∑
i:xi=0

∣∣yi∣∣
Second, we assume “ab absurdum” that no solution achieves zero
residuals. Ordering the slopes y1

x1
≤ · · · ≤ yn

xn
one can assume that

β̂, a LAD solution satisfies: î ∈ [n] s.t. β̂ ∈
(
yî
xî
,
yî+1
xî+1

)
By Fermat’s rule and hypothesis:

∑
i:β̂> yi

xi

|xi| =
∑

i:β̂< yi
xi

|xi|

One can check that β̃ = yî
xî
, also satisfies the first order condition:∑

i:β̃> yi
xi

|xi| −
∑

i:β̃< yi
xi

|xi|+ |xî| =
∑

i:β̂> yi
xi

|xi| −
∑

i:β̂< yi
xi

|xi| = 0

6 / 32

LAD in any dimension

Theorem
There exist at least one solution β̂ of the LAD for which
yi = 〈xi , β 〉 for at least rank(X) indices.

Proof: this is provided in Th.1, Bloomfield and Steiger (1983). It
works “ab absurdum”: then there exist δ s.t. 〈 δ , xi 〉 = 0 for
indices with yi = 〈xi , β 〉 and 〈 δ , xi 〉 6= 0 for indices with
yi 6= 〈xi , β 〉, then the objective is∑

i:yi 6=〈xi ,β 〉
|yi − 〈β , xi 〉 − t 〈 δ , xi 〉 |

for the point β + tδ. With the previous lemma, one can create one
more point that zeros the residual. This can be repeated except if
one reaches rank(X) indices.

7 / 32

LAD in any dimension

Theorem
There exist at least one solution β̂ of the LAD for which
yi = 〈xi , β 〉 for at least rank(X) indices.

Proof: this is provided in Th.1, Bloomfield and Steiger (1983). It
works “ab absurdum”: then there exist δ s.t. 〈 δ , xi 〉 = 0 for
indices with yi = 〈xi , β 〉 and 〈 δ , xi 〉 6= 0 for indices with
yi 6= 〈xi , β 〉, then the objective is∑

i:yi 6=〈xi ,β 〉
|yi − 〈β , xi 〉 − t 〈 δ , xi 〉 |

for the point β + tδ. With the previous lemma, one can create one
more point that zeros the residual. This can be repeated except if
one reaches rank(X) indices.

7 / 32

Table of Contents

Least Absolute Deviation

Equivariance

Least Trimmed Squares (LTS)

8 / 32

Regression equivariance

Let T be an estimator of β∗ (regression coeff.) based on
Z = (X,y)

Definition
We say that T is regression equivariant when for any dataset
(y,X) and any vector v ∈ Rp, one has

T (X, y +Xv) = T (X, y) + v

Rem: a simple case is the OLS (full rank case)

(X>X)−1X>(y +Xv) = (X>X)−1X>y + v

9 / 32

Scale equivariance

Let T be an estimator of β∗ (regression coeff.) based on
Z = (X,y)

Definition
We say that T is scale equivariant when for any dataset (y,X)
and any vector c ∈ R, one has

T (X, c · y) = c · T (X, y)

Rem: a simple case is the OLS (full rank case)

(X>X)−1X>(cy) = c(X>X)−1X>y

10 / 32

Affine equivariance

Let T be an estimator of β∗ (regression coeff.) based on
Z = (X,y)

Definition
We say that T is affine equivariant when for any dataset (y,X)
and any non-singular matrix A ∈ Rp×p, one has

T (XA, y) = A−1T (X, y)

Rem: a simple case is the OLS (full rank case)

(A>X>XA)−1(A)>X>(y) = A−1(X>X)−1X>y

11 / 32

Table of Contents

Least Absolute Deviation

Equivariance

Least Trimmed Squares (LTS)

12 / 32

LTS Definition

Definition
For h ∈ [n], the Least Trimmed Squares (LTS) estimator of
order h is defined by

β̂ ∈ arg min
β∈Rp

h∑
i=1

(r2(β))i:n,

where the vector r2(β) = ((y1 − 〈x1 , β 〉)2, . . . , (yn − 〈xn , β 〉)2)
represent the square residuals and (r2(β))1:n ≤ · · · ≤ (r2(β))n:n
are the ordered statistics of the squared residuals

Rem: when h < p, LTS not uniquely defined

Rem: when h = n, LTS reduces to standard OLS

13 / 32

Alternative formulations
Set formulation: For H ⊂ [n], we write
Q(H,β) = ‖XHβ − yH‖2 =

∑
i∈H(yi − 〈β , xi 〉)2 then

(β̂, Ĥ) ∈ arg min
H⊂[n]:#H=h

β∈Rp

Q(H,β)

Binary variables formulation:

(β̂, ŵ) ∈ arg min
β∈Rp

w⊂Rn

∀i∈[n],wi∈{0,1}
and

∑n

i=1 wi=h

n∑
i=1

wi(yi − 〈β , xi 〉)2

Rem: the later formulation is called a Mixed Integer
Programming problem. Convex relaxation can be obtained by
substituting wi ∈ [0, 1] to wi ∈ {0, 1}, or optimization solver (like
mosek, gurobi, etc.) can be considered.

14 / 32

Alternative formulations
Set formulation: For H ⊂ [n], we write
Q(H,β) = ‖XHβ − yH‖2 =

∑
i∈H(yi − 〈β , xi 〉)2 then

(β̂, Ĥ) ∈ arg min
H⊂[n]:#H=h

β∈Rp

Q(H,β)

Binary variables formulation:

(β̂, ŵ) ∈ arg min
β∈Rp

w⊂Rn

∀i∈[n],wi∈{0,1}
and

∑n

i=1 wi=h

n∑
i=1

wi(yi − 〈β , xi 〉)2

Rem: the later formulation is called a Mixed Integer
Programming problem. Convex relaxation can be obtained by
substituting wi ∈ [0, 1] to wi ∈ {0, 1}, or optimization solver (like
mosek, gurobi, etc.) can be considered.

14 / 32

Equivariance

Theorem
The LTS estimator is regression, scale and affine equivariant

Proof: consider the case where the data is y +Xv. Fix H ∈ [n], as
the optimal values in the LTS definition:

β̂ ∈ arg min
β

∑
i∈H

(yi + 〈 v , xi 〉 − 〈β , xi 〉)2

∈ arg min
β

∑
i∈H

(yi − 〈β − v , xi 〉)2

∈ v + arg min
β

∑
i∈H

(yi − 〈β , xi 〉)2

15 / 32

Equivariance

Theorem
The LTS estimator is regression, scale and affine equivariant

Proof: consider the case where the data is y +Xv. Fix H ∈ [n], as
the optimal values in the LTS definition:

β̂ ∈ arg min
β

∑
i∈H

(yi + 〈 v , xi 〉 − 〈β , xi 〉)2

∈ arg min
β

∑
i∈H

(yi − 〈β − v , xi 〉)2

∈ v + arg min
β

∑
i∈H

(yi − 〈β , xi 〉)2

15 / 32

Equivariance

Theorem
The LTS estimator is regression, scale and affine equivariant

Proof: consider the case where the data is y +Xv. Fix H ∈ [n], as
the optimal values in the LTS definition:

β̂ ∈ arg min
β

∑
i∈H

(yi + 〈 v , xi 〉 − 〈β , xi 〉)2

∈ arg min
β

∑
i∈H

(yi − 〈β − v , xi 〉)2

∈ v + arg min
β

∑
i∈H

(yi − 〈β , xi 〉)2

15 / 32

Breakdown point: Donoho’s definition

Definition: Breakdown point
For a dataset Z = (X,y) where X ∈ Rn×p corresponds to the
design matrix and y ∈ Rn to the observation vector, the
breakdown point of a statistic T is:

ε∗ = ε∗(T,Z) = m∗

n+m∗

where
m∗ = min

{
m : sup

#Z′=m
‖T (Z ∪ Z ′)− T (Z)‖ = +∞

}

Rem: ε-replacement variants often considered, see proof in
Rousseeuw and Leroy (1987)

16 / 32

Breakdown point1,2

For simplicity we assume a classical full rank design assumption (so
p < n).

Theorem
The breakdown point of any regression and permutation
equivariant estimator is less than or equal to n−p+1

2n−p+1 .

Rem: Asymptotically this is about a 50% breakdown point.

1P. J. Rousseeuw and A. M. Leroy. Robust regression and outlier detection. Wiley Series in Probability and
Mathematical Statistics: Applied Probability and Statistics. New York: John Wiley & Sons Inc., 1987, pp. xvi+329.

2D. L. Donoho. “Breakdown properties of multivariate location estimators”. PhD thesis. Harvard University,
1982.

17 / 32

Proof

ab absurdum: assume ∃B s.t.
sup#Z′=n−p+1 ‖T (Z ′ ∪ Z)− T (Z)‖ < B
Up to a samples reordering, because p− 1 vectors extracted among
the row of X are included in a hyperplane, ∃µ ∈ Rp, with µ 6= 0,
s.t. 〈µ , x1 〉 = · · · = 〈µ , xp−1 〉 = 0.

Consider:

Z ∪Z ′ =

x1, y1
...

...
xp−1, yp−1
xp, yp
...

...
xn, yn
xp, yp + 〈µ , xp 〉
...

...
xn, yn + 〈µ , xn 〉

=

x1, y1 + 〈µ , x1 〉
...

...
xp−1, yp−1 + 〈µ , xp−1 〉
xp, yp
...

...
xn, yn
xp, yp + 〈µ , xp 〉
...

...
xn, yn + 〈µ , xn 〉

18 / 32

Proof

ab absurdum: assume ∃B s.t.
sup#Z′=n−p+1 ‖T (Z ′ ∪ Z)− T (Z)‖ < B
Up to a samples reordering, because p− 1 vectors extracted among
the row of X are included in a hyperplane, ∃µ ∈ Rp, with µ 6= 0,
s.t. 〈µ , x1 〉 = · · · = 〈µ , xp−1 〉 = 0. Consider:

Z ∪Z ′ =

x1, y1
...

...
xp−1, yp−1
xp, yp
...

...
xn, yn
xp, yp + 〈µ , xp 〉
...

...
xn, yn + 〈µ , xn 〉

=

x1, y1 + 〈µ , x1 〉
...

...
xp−1, yp−1 + 〈µ , xp−1 〉
xp, yp
...

...
xn, yn
xp, yp + 〈µ , xp 〉
...

...
xn, yn + 〈µ , xn 〉

18 / 32

Proof

ab absurdum: assume ∃B s.t.
sup#Z′=n−p+1 ‖T (Z ′ ∪ Z)− T (Z)‖ < B
Up to a samples reordering, because p− 1 vectors extracted among
the row of X are included in a hyperplane, ∃µ ∈ Rp, with µ 6= 0,
s.t. 〈µ , x1 〉 = · · · = 〈µ , xp−1 〉 = 0. Consider:

Z ∪Z ′ =

x1, y1
...

...
xp−1, yp−1
xp, yp
...

...
xn, yn
xp, yp + 〈µ , xp 〉
...

...
xn, yn + 〈µ , xn 〉

=

x1, y1 + 〈µ , x1 〉
...

...
xp−1, yp−1 + 〈µ , xp−1 〉
xp, yp
...

...
xn, yn
xp, yp + 〈µ , xp 〉
...

...
xn, yn + 〈µ , xn 〉

18 / 32

Proof (continued)

So by regression equivariance, reminding Z = (X,y)

T

x1, y1 + 〈µ , x1 〉
...

...
xp−1, yp−1 + 〈µ , xp−1 〉
xp, yp
...

...
xn, yn
xp, yp + 〈µ , xp 〉
...

...
xn, yn + 〈µ , xn 〉

= T

x1, y1
...

...
xp−1, yp−1
xp, yp − 〈µ , xp 〉
...

...
xn, yn − 〈µ , xn 〉
xp, yp
...

...
xn, yn

+ µ

and then T (Z ∪ Z ′) = T (Z ∪ Z ′′) + µ for another dataset Z ′′ of
size n− p+ 1

19 / 32

Proof ending

By hypothesis: ‖T (Z ∪ Z ′)− T (Z)‖ ≤ B, but now one has also∥∥T (Z ∪ Z ′)− T (Z)
∥∥ =

∥∥T (Z ∪ Z ′′) + µ− T (Z)
∥∥

But Z ′′ being of size n− p+ 1, then one has :∥∥T (Z ∪ Z ′′)− T (Z)
∥∥ ≤ B

Since ‖µ‖ can be made arbitrarily large, leading to a contradiction.

20 / 32

Breakdown point3,4

Theorem
The (ε-contamination) breakdown point of the LTS is h

n+h . When
h = n− p+ 1, this reaches the largest bound for regression
equivariant estimators, i.e., n−p+1

2n−p+1

Rem: when n is large w.r.t. to p this is approximately 50%

3P. J. Rousseeuw and A. M. Leroy. Robust regression and outlier detection. Wiley Series in Probability and
Mathematical Statistics: Applied Probability and Statistics. New York: John Wiley & Sons Inc., 1987, pp. xvi+329.

4D. L. Donoho. “Breakdown properties of multivariate location estimators”. PhD thesis. Harvard University,
1982.

21 / 32

Proof

Let Z ′ = Z ∪ Z̃ the dataset, where one has added the h corrupted
elements (x̃1, ỹ1), . . . (x̃h, ỹh) (pick h = n− p+ 1 to reach
optimum)

To simplify the proof, we prove the lower bound for the Ridge
version of the LTS estimator only:

(β̂, Ĥ) = arg min
β∈Rp,H:#H=h

Q(H,β) + λ ‖β‖2

where Q(H,β) =
∥∥X ′Hβ − y′H

∥∥2 =
∑
i∈H

(y′i −
〈

β , x′i
〉
)2

22 / 32

Proof

Let Z ′ = Z ∪ Z̃ the dataset, where one has added the h corrupted
elements (x̃1, ỹ1), . . . (x̃h, ỹh) (pick h = n− p+ 1 to reach
optimum)

To simplify the proof, we prove the lower bound for the Ridge
version of the LTS estimator only:

(β̂, Ĥ) = arg min
β∈Rp,H:#H=h

Q(H,β) + λ ‖β‖2

where Q(H,β) =
∥∥X ′Hβ − y′H

∥∥2 =
∑
i∈H

(y′i −
〈

β , x′i
〉
)2

22 / 32

Proof continued

This means that for the Ridge version of the LTS, we prove that
when one modifies h (or less) samples the estimator remains
bounded.

Q(H∗, 0) = min
H:#H=h

Q(H, 0) =
h∑
i=1

y2
i:n ≤ h ‖y‖∞

Assume that ‖β‖2 ≥ 1+h‖y‖∞
λ , then

min
H:#H=h

Q(H,β) + λ ‖β‖2 ≥ λ ‖β‖2 ≥ λ1 + h ‖y‖∞
λ

> Q(H∗, 0)

Now since minβ,H:#H=hQ(H,β) ≤ Q(H∗, 0), one needs to have∥∥∥β̂∥∥∥2
≤ 1+h‖y‖∞

λ , a bound that does not depend on the x̃i, ỹi

23 / 32

Proof continued

This means that for the Ridge version of the LTS, we prove that
when one modifies h (or less) samples the estimator remains
bounded.

Q(H∗, 0) = min
H:#H=h

Q(H, 0) =
h∑
i=1

y2
i:n ≤ h ‖y‖∞

Assume that ‖β‖2 ≥ 1+h‖y‖∞
λ , then

min
H:#H=h

Q(H,β) + λ ‖β‖2 ≥ λ ‖β‖2 ≥ λ1 + h ‖y‖∞
λ

> Q(H∗, 0)

Now since minβ,H:#H=hQ(H,β) ≤ Q(H∗, 0), one needs to have∥∥∥β̂∥∥∥2
≤ 1+h‖y‖∞

λ , a bound that does not depend on the x̃i, ỹi

23 / 32

Proof continued

This means that for the Ridge version of the LTS, we prove that
when one modifies h (or less) samples the estimator remains
bounded.

Q(H∗, 0) = min
H:#H=h

Q(H, 0) =
h∑
i=1

y2
i:n ≤ h ‖y‖∞

Assume that ‖β‖2 ≥ 1+h‖y‖∞
λ , then

min
H:#H=h

Q(H,β) + λ ‖β‖2 ≥ λ ‖β‖2 ≥ λ1 + h ‖y‖∞
λ

> Q(H∗, 0)

Now since minβ,H:#H=hQ(H,β) ≤ Q(H∗, 0), one needs to have∥∥∥β̂∥∥∥2
≤ 1+h‖y‖∞

λ , a bound that does not depend on the x̃i, ỹi

23 / 32

Proof continued

This means that for the Ridge version of the LTS, we prove that
when one modifies h (or less) samples the estimator remains
bounded.

Q(H∗, 0) = min
H:#H=h

Q(H, 0) =
h∑
i=1

y2
i:n ≤ h ‖y‖∞

Assume that ‖β‖2 ≥ 1+h‖y‖∞
λ , then

min
H:#H=h

Q(H,β) + λ ‖β‖2 ≥ λ ‖β‖2 ≥ λ1 + h ‖y‖∞
λ

> Q(H∗, 0)

Now since minβ,H:#H=hQ(H,β) ≤ Q(H∗, 0), one needs to have∥∥∥β̂∥∥∥2
≤ 1+h‖y‖∞

λ , a bound that does not depend on the x̃i, ỹi

23 / 32

Proof continued

This means that for the Ridge version of the LTS, we prove that
when one modifies h (or less) samples the estimator remains
bounded.

Q(H∗, 0) = min
H:#H=h

Q(H, 0) =
h∑
i=1

y2
i:n ≤ h ‖y‖∞

Assume that ‖β‖2 ≥ 1+h‖y‖∞
λ , then

min
H:#H=h

Q(H,β) + λ ‖β‖2 ≥ λ ‖β‖2 ≥ λ1 + h ‖y‖∞
λ

> Q(H∗, 0)

Now since minβ,H:#H=hQ(H,β) ≤ Q(H∗, 0), one needs to have∥∥∥β̂∥∥∥2
≤ 1+h‖y‖∞

λ , a bound that does not depend on the x̃i, ỹi

23 / 32

Optimization for LTS :
Mixed Integer Programming

Generic approach; requires fast solvers like gurobi, mosek, cplex,
etc.
Ingredients:

I Convex relaxation : convexify the binary constraints

P

cvx

= min
β∈Rp

w⊂Rn

∀i∈[n],wi∈{0,1}
and

∑n

i=1 wi=h

n∑
i=1

wi(yi − 〈β , xi 〉)2

I If a solution ŵ of P has integer values stop: the global
optimal solution has been found

Rem: P cvx ≤ P (lower bound on the optimal value)

24 / 32

Optimization for LTS :
Mixed Integer Programming

Generic approach; requires fast solvers like gurobi, mosek, cplex,
etc.
Ingredients:

I Convex relaxation : convexify the binary constraints

P cvx = min
β∈Rp

w⊂Rn

∀i∈[n],wi∈[0,1]
and

∑n

i=1 wi=h

n∑
i=1

wi(yi − 〈β , xi 〉)2

I If a solution ŵ of P has integer values stop: the global
optimal solution has been found

Rem: P cvx ≤ P (lower bound on the optimal value)

24 / 32

Branch and bound
Otherwise: “branch and bound”, ∃i0 ∈ [n] such that wi0 ∈]0, 1[so
solve two MIP problems:

Pl = min
β∈Rp

w⊂Rn

∀i∈[n],wi∈{0,1}∑n

i=1 wi=h
wi0 =0

n∑
i=1

wi(yi − 〈β , xi 〉)2 Pr = min
β∈Rp

w⊂Rn

∀i∈[n],wi∈{0,1}∑n

i=1 wi=h
wi0 =1

n∑
i=1

wi(yi − 〈β , xi 〉)2

The variable i0 is called a branching variable

Now one has P = min(Pl, Pr), and one can solve recursively the
problems Pr and Pl by proceeding similarly (use a search tree,
and in general no need to solve the 2n sub-problems)

Rem: other useful bounds are P cvx ≤ min(P cvx
l , P cvx

r) ≤ P

Rem: upper bounds can be obtained by finding feasible points
(e.g., rounding)

25 / 32

Branch and bound
Otherwise: “branch and bound”, ∃i0 ∈ [n] such that wi0 ∈]0, 1[so
solve two MIP problems:

Pl = min
β∈Rp

w⊂Rn

∀i∈[n],wi∈{0,1}∑n

i=1 wi=h
wi0 =0

n∑
i=1

wi(yi − 〈β , xi 〉)2 Pr = min
β∈Rp

w⊂Rn

∀i∈[n],wi∈{0,1}∑n

i=1 wi=h
wi0 =1

n∑
i=1

wi(yi − 〈β , xi 〉)2

The variable i0 is called a branching variable

Now one has P = min(Pl, Pr), and one can solve recursively the
problems Pr and Pl by proceeding similarly (use a search tree,
and in general no need to solve the 2n sub-problems)

Rem: other useful bounds are P cvx ≤ min(P cvx
l , P cvx

r) ≤ P

Rem: upper bounds can be obtained by finding feasible points
(e.g., rounding)

25 / 32

Branch and bound
Otherwise: “branch and bound”, ∃i0 ∈ [n] such that wi0 ∈]0, 1[so
solve two MIP problems:

Pl = min
β∈Rp

w⊂Rn

∀i∈[n],wi∈{0,1}∑n

i=1 wi=h
wi0 =0

n∑
i=1

wi(yi − 〈β , xi 〉)2 Pr = min
β∈Rp

w⊂Rn

∀i∈[n],wi∈{0,1}∑n

i=1 wi=h
wi0 =1

n∑
i=1

wi(yi − 〈β , xi 〉)2

The variable i0 is called a branching variable

Now one has P = min(Pl, Pr), and one can solve recursively the
problems Pr and Pl by proceeding similarly (use a search tree,
and in general no need to solve the 2n sub-problems)

Rem: other useful bounds are P cvx ≤ min(P cvx
l , P cvx

r) ≤ P

Rem: upper bounds can be obtained by finding feasible points
(e.g., rounding)

25 / 32

Branch and bound
Otherwise: “branch and bound”, ∃i0 ∈ [n] such that wi0 ∈]0, 1[so
solve two MIP problems:

Pl = min
β∈Rp

w⊂Rn

∀i∈[n],wi∈{0,1}∑n

i=1 wi=h
wi0 =0

n∑
i=1

wi(yi − 〈β , xi 〉)2 Pr = min
β∈Rp

w⊂Rn

∀i∈[n],wi∈{0,1}∑n

i=1 wi=h
wi0 =1

n∑
i=1

wi(yi − 〈β , xi 〉)2

The variable i0 is called a branching variable

Now one has P = min(Pl, Pr), and one can solve recursively the
problems Pr and Pl by proceeding similarly (use a search tree,
and in general no need to solve the 2n sub-problems)

Rem: other useful bounds are P cvx ≤ min(P cvx
l , P cvx

r) ≤ P

Rem: upper bounds can be obtained by finding feasible points
(e.g., rounding)

25 / 32

Fast LTS
Simple alternative: iterative procedure Rousseeuw and Van
Driessen(2006)

Algorithm: Fast LTS
input : h, max. iterations tmax, stopping criterion ε
init : H0,β0

for 1 ≤ t ≤ tmax do
Break if stopping criterion smaller than ε

Ht+1 ← arg min
H:#H=h

∥∥∥XHβt − yH
∥∥∥2

βt+1 ← arg min
β

‖XHt+1β − yHt+1‖2

return βt, Ht

Rem: Q(Ht+1,βt+1) ≤ Q(Ht+1,βt) ≤ Q(Ht,βt)

26 / 32

Fast LTS
Simple alternative: iterative procedure Rousseeuw and Van
Driessen(2006)

Algorithm: Fast LTS
input : h, max. iterations tmax, stopping criterion ε
init : H0,β0

for 1 ≤ t ≤ tmax do
Break if stopping criterion smaller than ε

Ht+1 ← arg min
H:#H=h

∥∥∥XHβt − yH
∥∥∥2

βt+1 ← arg min
β

‖XHt+1β − yHt+1‖2

return βt, Ht

Rem: Q(Ht+1,βt+1) ≤ Q(Ht+1,βt) ≤ Q(Ht,βt)
26 / 32

Another simpler alternative : Fast LTS
I the update

Ht+1 ← arg min
H:#H=h

∥∥∥XHβt − yH
∥∥∥2

can be obtained in a closed form by sorting; cost=
O(n log(n)) or less if h is small (use: np.partition in
numpy)

I inner solver needed for the second update:

βt+1 ← arg min
β

‖XHt+1β − yHt+1‖2

A second stopping criteria is then needed; possibly do not
solve too precisely the problem at each step

I initialization is tricky (e.g., similar to K-means issues), might
use several initialization

27 / 32

Another simpler alternative : Fast LTS
I the update

Ht+1 ← arg min
H:#H=h

∥∥∥XHβt − yH
∥∥∥2

can be obtained in a closed form by sorting; cost=
O(n log(n)) or less if h is small (use: np.partition in
numpy)

I inner solver needed for the second update:

βt+1 ← arg min
β

‖XHt+1β − yHt+1‖2

A second stopping criteria is then needed; possibly do not
solve too precisely the problem at each step

I initialization is tricky (e.g., similar to K-means issues), might
use several initialization

27 / 32

Another simpler alternative : Fast LTS
I the update

Ht+1 ← arg min
H:#H=h

∥∥∥XHβt − yH
∥∥∥2

can be obtained in a closed form by sorting; cost=
O(n log(n)) or less if h is small (use: np.partition in
numpy)

I inner solver needed for the second update:

βt+1 ← arg min
β

‖XHt+1β − yHt+1‖2

A second stopping criteria is then needed; possibly do not
solve too precisely the problem at each step

I initialization is tricky (e.g., similar to K-means issues), might
use several initialization

27 / 32

Summary on optimizing LTS

2 directions:
I Mixed Integer Programming

I pros: bounds / certificate for optimality
I cons: more complex to implement, need of specific solvers

I Alternate minimization
I pros: simple to implement
I cons: initialization, no guarantee (only convergence to local

minimum)

Rem: hybrid method could be useful, as MIP can benefit from a
nicer initialization (through nicer upper bounds)
Rem: “continuation” method can also be proposed, i.e., start by
small h (fast to solve) and then increase h progressively

28 / 32

LTS extensions through regularization5

Adapt to high dimensional constraints using regularization:

(β̂, Ĥ) ∈ arg min
H⊂[n]:#H=h

β∈Rp

Q(H,β) + hλ pen(β)

where Q(H,β) = ‖XHβ − yH‖2 =
∑
i∈H(yi − 〈β , xi 〉)2

I Ridge penalty (as seen earlier): pen(β) = ‖β‖2

I Lasso penalty for sparsity enforcing: pen(β) = ‖β‖1
I etc.

Rem: such approaches loose regression equivariance by enforcing
specific constraints on the targeted solution (e.g., sparsity)

5A. Alfons, C. Croux, and S. Gelper. “Sparse least trimmed squares regression for analyzing high-dimensional
large data sets”. In: Ann. Appl. Stat. 7.1 (2013), pp. 226–248.

29 / 32

References and supplementary material

I For extensions to joint estimation of β and noise level σ cf.
Ch. 6, Maronna et al. (2006)

Example : consider for β̂ being the LTS

σ̂ = 1
h

h∑
i=1

(r2(β̂))i:n,

I Heteroscedastic models (case where the noise level differs for
each observations) Ch. 6, Maronna et al. (2006)

I branch and bound:
https://web.stanford.edu/class/ee392o/bb.pdf

30 / 32

https://web.stanford.edu/class/ee392o/bb.pdf

References I

I Alfons, A., C. Croux, and S. Gelper. “Sparse least trimmed squares
regression for analyzing high-dimensional large data sets”. In:
Ann. Appl. Stat. 7.1 (2013), pp. 226–248.

I Bloomfield, P. and W. L. Steiger. Least absolute deviations. Vol. 6.
Progress in Probability and Statistics. Theory, applications, and
algorithms. Birkhäuser Boston, Inc., Boston, MA, 1983,
pp. xiv+349.

I Donoho, D. L. “Breakdown properties of multivariate location
estimators”. PhD thesis. Harvard University, 1982.

I Maronna, R. A., R. D. Martin, and V. J. Yohai. Robust statistics:
Theory and methods. Chichester: John Wiley & Sons, 2006.

I Rousseeuw, P. J. and A. M. Leroy. Robust regression and outlier
detection. Wiley Series in Probability and Mathematical
Statistics: Applied Probability and Statistics. New York: John
Wiley & Sons Inc., 1987, pp. xvi+329.

31 / 32

References II

I Rousseeuw, P. J. and K. Van Driessen. “Computing LTS
Regression for Large Data Sets”. In: Data Mining and
Knowledge Discovery 12.1 (2006), pp. 29–45.

32 / 32

	Least Absolute Deviation
	Equivariance
	Least Trimmed Squares (LTS)

