STAT 593 Robustness and Linear Models

Joseph Salmon

http://josephsalmon.eu

Télécom Paristech, Institut Mines-Télécom & University of Washington, Department of Statistics (Visiting Assistant Professor)

Outline

Least Absolute Deviation

Equivariance

Least Trimmed Squares (LTS)

Table of Contents

Least Absolute Deviation

Equivariance

Least Trimmed Squares (LTS)

Reminder on (Ordinary) Least squares, (O)LS

Model:

 $\mathbf{y} \approx X \boldsymbol{\beta}^*$ where $\mathbf{y} \in \mathbb{R}^n, X \in \mathbb{R}^{n \times p}, \boldsymbol{\beta}^* \in \mathbb{R}^p$ (true coefficient)

<u>A</u> least square estimator is **any** solution of the following problem:

$$\hat{\boldsymbol{\beta}} \in \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \frac{1}{2} \| \mathbf{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 := f(\boldsymbol{\beta})$$
$$\hat{\boldsymbol{\beta}} \in \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \frac{1}{2} \sum_{i=1}^n \left[y_i - \langle x_i, \boldsymbol{\beta} \rangle \right]^2$$

Rem: Gaussian (-log)-likelihood leads to square formulation

Least Absolute Deviation (LAD)

$$\hat{\boldsymbol{eta}} \in \operatorname*{arg\,min}_{\boldsymbol{eta} \in \mathbb{R}^p} \| \mathbf{y} - X\boldsymbol{eta} \|_1 := f(\boldsymbol{eta})$$
 $\hat{\boldsymbol{eta}} \in \operatorname*{arg\,min}_{\boldsymbol{eta} \in \mathbb{R}^p} \sum_{i=1}^n |y_i - \langle x_i, \boldsymbol{eta}
angle|$

Many properties, see Bloomfield and Steiger (1983) for instance for historical purspose When p = 1, the estimator is

$$\hat{\boldsymbol{\beta}} \in \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}} \sum_{i=1}^{n} |y_i - x_i \boldsymbol{\beta}|$$

and one can find a solution with zero residuals, *i.e.*, $y_{i_0} = x_{i_0}\beta$

First, one can simplify the problems to cases without any $x_i = 0$ by noticing that

$$\sum_{i=1}^{n} |y_i - x_i \beta| \ge \sum_{i:x_i \neq 0} |y_i - x_i \beta| + \sum_{i:x_i = 0} |y_i|$$

n

Second, we assume "ab absurdum" that no solution achieves zero residuals. Ordering the slopes $\frac{y_1}{x_1} \leq \cdots \leq \frac{y_n}{x_n}$ one can assume that $\hat{\beta}$, a LAD solution satisfies: $\hat{i} \in [n]$ s.t. $\hat{\beta} \in \left(\frac{y_{\hat{i}}}{x_{\hat{i}}}, \frac{y_{\hat{i}+1}}{x_{\hat{i}+1}}\right)$ By Fermat's rule and hypothesis: $\sum_{i:\hat{\beta} > \frac{y_i}{x_i}} |x_i| = \sum_{i:\hat{\beta} < \frac{y_i}{x_i}} |x_i|$

One can check that $\tilde{oldsymbol{eta}}=rac{y_i}{x_i}$, also satisfies the first order condition:

$$\sum_{i:\tilde{\beta} > \frac{y_i}{x_i}} |x_i| - \sum_{i:\tilde{\beta} < \frac{y_i}{x_i}} |x_i| + |x_{\hat{i}}| = \sum_{i:\hat{\beta} > \frac{y_i}{x_i}} |x_i| - \sum_{i:\hat{\beta} < \frac{y_i}{x_i}} |x_i| = 0$$

LAD in any dimension

Theorem

There exist at least one solution $\hat{\beta}$ of the LAD for which $y_i = \langle x_i, \beta \rangle$ for at least $\operatorname{rank}(X)$ indices.

LAD in any dimension

Theorem

There exist at least one solution $\hat{\beta}$ of the LAD for which $y_i = \langle x_i, \beta \rangle$ for at least $\operatorname{rank}(X)$ indices.

<u>Proof</u>: this is provided in Th.1, Bloomfield and Steiger (1983). It works "ab absurdum": then there exist δ s.t. $\langle \delta, x_i \rangle = 0$ for indices with $y_i = \langle x_i, \beta \rangle$ and $\langle \delta, x_i \rangle \neq 0$ for indices with $y_i \neq \langle x_i, \beta \rangle$, then the objective is $\sum_{i:y_i \neq \langle x_i, \beta \rangle} |y_i - \langle \beta, x_i \rangle - t \langle \delta, x_i \rangle|$

for the point $\beta + t\delta$. With the previous lemma, one can create one more point that zeros the residual. This can be repeated except if one reaches rank(X) indices.

Table of Contents

Least Absolute Deviation

Equivariance

Least Trimmed Squares (LTS)

Regression equivariance

Let T be an estimator of $\boldsymbol{\beta}^*$ (regression coeff.) based on $Z=(X,\mathbf{y})$

Definition

We say that T is regression equivariant when for any dataset (y, X) and any vector $v \in \mathbb{R}^p$, one has

$$T(X, y + Xv) = T(X, y) + v$$

Rem: a simple case is the OLS (full rank case)

$$(X^{\top}X)^{-1}X^{\top}(y+Xv) = (X^{\top}X)^{-1}X^{\top}y + v$$

Scale equivariance

Let T be an estimator of $\boldsymbol{\beta}^*$ (regression coeff.) based on $Z=(X,\mathbf{y})$

Definition

We say that T is scale equivariant when for any dataset (y, X)and any vector $c \in \mathbb{R}$, one has

$$T(X,c\cdot y)=c\cdot T(X,y)$$

<u>Rem</u>: a simple case is the OLS (full rank case)

$$(X^{\top}X)^{-1}X^{\top}(cy) = c(X^{\top}X)^{-1}X^{\top}y$$

Affine equivariance

Let T be an estimator of $\boldsymbol{\beta}^*$ (regression coeff.) based on $Z=(X,\mathbf{y})$

Definition

We say that T is affine equivariant when for any dataset (y, X)and any non-singular matrix $A \in \mathbb{R}^{p \times p}$, one has

$$T(XA, y) = A^{-1}T(X, y)$$

<u>Rem</u>: a simple case is the OLS (full rank case)

$$(A^{\top}X^{\top}XA)^{-1}(A)^{\top}X^{\top}(y) = A^{-1}(X^{\top}X)^{-1}X^{\top}y$$

Table of Contents

Least Absolute Deviation

Equivariance

Least Trimmed Squares (LTS)

LTS Definition

Definition

For $h \in [n]$, the Least Trimmed Squares (LTS) estimator of order h is defined by

$$\hat{\boldsymbol{eta}} \in \operatorname*{arg\,min}_{\boldsymbol{eta} \in \mathbb{R}^p} \sum_{i=1}^h (r^2(\boldsymbol{eta}))_{i:n},$$

where the vector $r^2(\beta) = ((y_1 - \langle x_1, \beta \rangle)^2, \dots, (y_n - \langle x_n, \beta \rangle)^2)$ represent the square **residuals** and $(r^2(\beta))_{1:n} \leq \dots \leq (r^2(\beta))_{n:n}$ are the ordered statistics of the squared residuals

<u>Rem</u>: when h < p, LTS not uniquely defined

<u>Rem:</u> when h = n, LTS reduces to standard OLS

Alternative formulations

 $\begin{array}{l} \underline{\text{Set formulation:}} & \text{For } H \subset [n] \text{, we write} \\ Q(H, \boldsymbol{\beta}) = \|X_H \boldsymbol{\beta} - \mathbf{y}_H\|^2 = \sum_{i \in H} (y_i - \langle \, \boldsymbol{\beta} \,, \, x_i \, \rangle)^2 & \text{then} \end{array}$

$$(\hat{\boldsymbol{\beta}}, \hat{H}) \in \operatorname*{arg\,min}_{\substack{H \subset [n]: \#H = h \\ \boldsymbol{\beta} \in \mathbb{R}^p}} Q(H, \boldsymbol{\beta})$$

Alternative formulations

 $\begin{array}{l} \underline{\text{Set formulation:}} & \text{For } H \subset [n] \text{, we write} \\ Q(H, \beta) = \|X_H \beta - \mathbf{y}_H\|^2 = \sum_{i \in H} (y_i - \langle \beta, \, x_i \, \rangle)^2 & \text{then} \\ & (\hat{\beta}, \hat{H}) \in \operatorname*{arg\,min}_{\substack{H \subset [n]: \# H = h \\ \beta \in \mathbb{R}^p}} Q(H, \beta) \end{array}$

Binary variables formulation:

$$(\hat{\boldsymbol{\beta}}, \hat{w}) \in \underset{\substack{\boldsymbol{\beta} \in \mathbb{R}^{p} \\ w \subset \mathbb{R}^{n} \\ \forall i \in [n], w_{i} \in \{0,1\} \\ \text{and } \sum_{i=1}^{n} w_{i} = h}{\underset{\substack{\beta \in \mathbb{R}^{p} \\ w \in [n], w_{i} \in \{0,1\} \\ n = h}}} \sum_{i=1}^{n} w_{i} (y_{i} - \langle \boldsymbol{\beta} , x_{i} \rangle)^{2}$$

<u>Rem</u>: the later formulation is called a **Mixed Integer Programming** problem. Convex relaxation can be obtained by substituting $w_i \in [0, 1]$ to $w_i \in \{0, 1\}$, or optimization solver (like mosek, gurobi, etc.) can be considered.

Equivariance

Theorem

The LTS estimator is regression, scale and affine equivariant

<u>Proof</u>: consider the case where the data is y + Xv. Fix $H \in [n]$, as the optimal values in the LTS definition:

$$\hat{\boldsymbol{\beta}} \in \operatorname*{arg\,min}_{\boldsymbol{\beta}} \sum_{i \in H} (y_i + \langle v, x_i \rangle - \langle \boldsymbol{\beta}, x_i \rangle)^2$$

Equivariance

Theorem

The LTS estimator is regression, scale and affine equivariant

<u>Proof</u>: consider the case where the data is y + Xv. Fix $H \in [n]$, as the optimal values in the LTS definition:

$$\hat{\boldsymbol{\beta}} \in \underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \sum_{i \in H} (y_i + \langle v, x_i \rangle - \langle \boldsymbol{\beta}, x_i \rangle)^2$$
$$\in \underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \sum_{i \in H} (y_i - \langle \boldsymbol{\beta} - v, x_i \rangle)^2$$

Equivariance

Theorem

The LTS estimator is regression, scale and affine equivariant

<u>Proof</u>: consider the case where the data is y + Xv. Fix $H \in [n]$, as the optimal values in the LTS definition:

$$\hat{\boldsymbol{\beta}} \in \underset{\boldsymbol{\beta}}{\arg\min} \sum_{i \in H} (y_i + \langle v, x_i \rangle - \langle \boldsymbol{\beta}, x_i \rangle)^2$$
$$\in \underset{\boldsymbol{\beta}}{\arg\min} \sum_{i \in H} (y_i - \langle \boldsymbol{\beta} - v, x_i \rangle)^2$$
$$\in v + \underset{\boldsymbol{\beta}}{\arg\min} \sum_{i \in H} (y_i - \langle \boldsymbol{\beta}, x_i \rangle)^2$$

Breakdown point: Donoho's definition

Definition: Breakdown point

For a dataset $Z = (X, \mathbf{y})$ where $X \in \mathbb{R}^{n \times p}$ corresponds to the design matrix and $\mathbf{y} \in \mathbb{R}^n$ to the observation vector, the **breakdown point** of a statistic T is:

$$\varepsilon^* = \varepsilon^*(T, Z) = \frac{m^*}{n + m^*}$$

where

$$m^* = \min\left\{m : \sup_{\#Z'=m} \|T(Z \cup Z') - T(Z)\| = +\infty\right\}$$

<u>Rem</u>: ε -replacement variants often considered, see proof in Rousseeuw and Leroy (1987)

Breakdown point^{1,2}

For simplicity we assume a classical full rank design assumption (so p < n).

Theorem

The breakdown point of any regression and permutation equivariant estimator is less than or equal to $\frac{n-p+1}{2n-p+1}$.

<u>Rem</u>: Asymptotically this is about a 50% breakdown point.

¹P. J. Rousseeuw and A. M. Leroy. Robust regression and outlier detection. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. New York: John Wiley & Sons Inc., 1987, pp. xvi+329.

²D. L. Donoho. "Breakdown properties of multivariate location estimators". PhD thesis. Harvard University, 1982.

ab absurdum: assume $\exists B \text{ s.t.}$ $\sup_{\#Z'=n-p+1} \|T(Z' \cup Z) - T(Z)\| < B$ Up to a samples reordering, because p-1 vectors extracted among the row of X are included in a hyperplane, $\exists \mu \in \mathbb{R}^p$, with $\mu \neq 0$, s.t. $\langle \mu, x_1 \rangle = \cdots = \langle \mu, x_{p-1} \rangle = 0$.

ab absurdum: assume $\exists B$ s.t. $\sup_{\#Z'=n-p+1} \|T(Z' \cup Z) - T(Z)\| < B$ Up to a samples reordering, because p-1 vectors extracted among the row of X are included in a hyperplane, $\exists \mu \in \mathbb{R}^p$, with $\mu \neq 0$, s.t. $\langle \mu, x_1 \rangle = \cdots = \langle \mu, x_{p-1} \rangle = 0$. Consider: $Z \cup Z' = \begin{pmatrix} x_1, & y_1 \\ \vdots & \vdots \\ x_{p-1}, & y_{p-1} \\ x_p, & y_p \\ \vdots & \vdots \\ x_n, & y_n \\ x_p, & y_p + \langle \mu, x_p \rangle \\ \vdots & \vdots \\ x_n, & y_n + \langle \mu, x_n \rangle \end{pmatrix}$

ab absur	<i>ab absurdum</i> : assume $\exists B$ s.t.					
$\sup_{\#Z'=n-p+1} \ T(Z' \cup Z) - T(Z)\ < B$						
Up to a samples reordering, because $p-1$ vectors extracted among						
the row of X are included in a hyperplane, $\exists \mu \in \mathbb{R}^p$, with $\mu eq 0$,						
s.t. $\langle \mu, x_1 \rangle = \cdots = \langle \mu, x_{p-1} \rangle = 0$. Consider:						
	$(x_1,$	y_1		$(x_1,$	$y_1 + \langle \mu, x_1 \rangle$	
		:		:	:	
	$x_{p-1},$	y_{p-1}		$x_{p-1},$	$y_{p-1} + \langle \mu, x_{p-1} \rangle$	
	$x_p,$	y_p		x_p ,	y_p	
$Z \cup Z' =$:	÷	=	÷	:	
	$x_n,$	y_n		x_n ,	y_n	
	$x_p,$	$y_p + \langle \mu , x_p \rangle$		$x_p,$	$y_p + \langle \mu , x_p \rangle$	
		÷		:	:	
	$\left(x_n, \right)$	$y_n + \langle \mu, x_n \rangle \Big)$		$\langle x_n,$	$y_n + \langle \mu, x_n \rangle $	

So by regression equivariance, reminding
$$Z = (X, \mathbf{y})$$

$$\begin{pmatrix} x_1, & y_1 + \langle \mu, x_1 \rangle \\ \vdots & \vdots \\ x_{p-1}, & y_{p-1} + \langle \mu, x_{p-1} \rangle \\ x_p, & y_p \\ \vdots & \vdots \\ x_n, & y_n \\ x_p, & y_p + \langle \mu, x_p \rangle \\ \vdots & \vdots \\ x_n, & y_n + \langle \mu, x_n \rangle \end{pmatrix} = T \begin{pmatrix} x_1, & y_1 \\ \vdots & \vdots \\ x_{p-1}, & y_{p-1} \\ x_p, & y_p - \langle \mu, x_p \rangle \\ \vdots & \vdots \\ x_n, & y_n - \langle \mu, x_n \rangle \\ x_p, & y_p \\ \vdots & \vdots \\ x_n, & y_n \end{pmatrix} + \mu$$

and then $T(Z\cup Z')=T(Z\cup Z'')+\mu$ for another dataset Z'' of size n-p+1

Proof ending

By hypothesis: $||T(Z \cup Z') - T(Z)|| \le B$, but now one has also $||T(Z \cup Z') - T(Z)|| = ||T(Z \cup Z'') + \mu - T(Z)||$

But
$$Z''$$
 being of size $n - p + 1$, then one has :
 $\|T(Z \cup Z'') - T(Z)\| \le B$

Since $\|\mu\|$ can be made arbitrarily large, leading to a contradiction.

Breakdown point^{3,4}

Theorem

The (ε -contamination) breakdown point of the LTS is $\frac{h}{n+h}$. When h = n - p + 1, this reaches the largest bound for regression equivariant estimators, *i.e.*, $\frac{n-p+1}{2n-p+1}$

<u>Rem</u>: when n is large w.r.t. to p this is approximately 50%

³P. J. Rousseeuw and A. M. Leroy. Robust regression and outlier detection. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. New York: John Wiley & Sons Inc., 1987, pp. xvi+329.

⁴D. L. Donoho. "Breakdown properties of multivariate location estimators". PhD thesis. Harvard University, 1982.

Let $Z' = Z \cup \tilde{Z}$ the dataset, where one has added the h corrupted elements $(\tilde{x}_1, \tilde{y}_1), \ldots (\tilde{x}_h, \tilde{y}_h)$ (pick h = n - p + 1 to reach optimum)

Let $Z' = Z \cup \tilde{Z}$ the dataset, where one has added the h corrupted elements $(\tilde{x}_1, \tilde{y}_1), \ldots (\tilde{x}_h, \tilde{y}_h)$ (pick h = n - p + 1 to reach optimum)

To simplify the proof, we prove the lower bound for the Ridge version of the LTS estimator only:

$$\begin{split} (\hat{\boldsymbol{\beta}}, \hat{H}) &= \mathop{\arg\min}_{\boldsymbol{\beta} \in \mathbb{R}^{p}, H: \#H=h} Q(H, \boldsymbol{\beta}) + \lambda \, \|\boldsymbol{\beta}\|^{2} \\ \text{where} \quad Q(H, \boldsymbol{\beta}) &= \left\| X'_{H} \boldsymbol{\beta} - \mathbf{y}'_{H} \right\|^{2} = \sum_{i \in H} (y'_{i} - \left\langle \right. \boldsymbol{\beta} \,, \, x'_{i} \left. \right\rangle)^{2} \end{split}$$

This means that for the Ridge version of the LTS, we prove that when one modifies h (or less) samples the estimator remains bounded.

This means that for the Ridge version of the LTS, we prove that when one modifies h (or less) samples the estimator remains bounded.

$$Q(H^*, 0) = \min_{H:\#H=h} Q(H, 0) = \sum_{i=1}^{h} y_{i:n}^2 \le h \|y\|_{\infty}^2$$

This means that for the Ridge version of the LTS, we prove that when one modifies h (or less) samples the estimator remains bounded.

$$Q(H^*, 0) = \min_{H: \#H=h} Q(H, 0) = \sum_{i=1}^{h} y_{i:n}^2 \le h \|y\|_{\infty}^2$$

Assume that $\|oldsymbol{eta}\|^2 \geq rac{1+h\|y\|_\infty^2}{\lambda}$, then

 $\min_{H:\#H=h} Q(H,\beta) + \lambda \left\|\beta\right\|^2 \ge \lambda \left\|\beta\right\|^2 \ge \lambda \frac{1+h \left\|y\right\|_{\infty}^2}{\lambda} > Q(H^*,0)$

This means that for the Ridge version of the LTS, we prove that when one modifies h (or less) samples the estimator remains bounded.

$$Q(H^*, 0) = \min_{H: \#H=h} Q(H, 0) = \sum_{i=1}^{h} y_{i:n}^2 \le h \|y\|_{\infty}^2$$

Assume that $\|oldsymbol{eta}\|^2 \geq rac{1+h\|y\|_\infty^2}{\lambda}$, then

 $\min_{H:\#H=h} Q(H,\beta) + \lambda \left\|\beta\right\|^2 \ge \lambda \left\|\beta\right\|^2 \ge \lambda \frac{1+h \left\|y\right\|_{\infty}^2}{\lambda} > Q(H^*,0)$

This means that for the Ridge version of the LTS, we prove that when one modifies h (or less) samples the estimator remains bounded.

$$Q(H^*, 0) = \min_{H: \#H=h} Q(H, 0) = \sum_{i=1}^{h} y_{i:n}^2 \le h \|y\|_{\infty}^2$$

Assume that $\|oldsymbol{eta}\|^2 \geq rac{1+h\|y\|_\infty^2}{\lambda}$, then

$$\min_{H:\#H=h} Q(H,\beta) + \lambda \left\|\beta\right\|^2 \ge \lambda \left\|\beta\right\|^2 \ge \lambda \frac{1+h \left\|y\right\|_{\infty}^2}{\lambda} > Q(H^*,0)$$

Now since $\min_{\beta,H:\#H=h} Q(H,\beta) + \lambda \|\beta\|^2 \leq Q(H^*,0)$, one needs to have $\|\hat{\beta}\|^2 \leq \frac{1+h\|y\|_{\infty}^2}{\lambda}$, a bound that does not depend on the \tilde{x}_i, \tilde{y}_i

Optimization for LTS : Mixed Integer Programming

Generic approach; requires fast solvers like gurobi, mosek, cplex, etc.

Ingredients:

Convex relaxation : convexify the binary constraints

$$P = \min_{\substack{\boldsymbol{\beta} \in \mathbb{R}^n \\ w \subset \mathbb{R}^n \\ \forall i \in [n], w_i \in \{0,1\} \\ \text{and } \sum_{i=1}^n w_i = h}} \sum_{i=1}^n w_i (y_i - \langle \boldsymbol{\beta}, x_i \rangle)^2$$

• If a solution \hat{w} of P has integer values stop: the global optimal solution has been found

<u>Rem</u>: $P^{\text{cvx}} \leq P$ (lower bound on the optimal value)

Optimization for LTS : Mixed Integer Programming

Generic approach; requires fast solvers like gurobi, mosek, cplex, etc.

Ingredients:

Convex relaxation : convexify the binary constraints

$$P^{\text{cvx}} = \min_{\substack{\boldsymbol{\beta} \in \mathbb{R}^n \\ w \subset \mathbb{R}^n \\ \forall i \in [n], w_i \in [0, 1] \\ \text{and } \sum_{i=1}^n w_i = h}} \sum_{i=1}^n w_i (y_i - \langle \boldsymbol{\beta}, x_i \rangle)^2$$

• If a solution \hat{w} of P has integer values stop: the global optimal solution has been found

<u>Rem</u>: $P^{\text{cvx}} \leq P$ (lower bound on the optimal value)

Otherwise: "branch and bound", $\exists i_0 \in [n]$ such that $w_{i_0} \in]0,1[$ so solve two MIP problems:

$$P_{l} = \min_{\substack{\boldsymbol{\beta} \in \mathbb{R}^{n} \\ w \subset \mathbb{R}^{n} \\ \forall i \in [n], w_{i} \in \{0,1\} \\ \sum_{i=1}^{n} w_{i} = h \\ w_{i_{0}} = 0}} \sum_{i=1}^{n} w_{i}(y_{i} - \langle \boldsymbol{\beta}, x_{i} \rangle)^{2} \quad \left| \begin{array}{c} P_{r} = \min_{\substack{\boldsymbol{\beta} \in \mathbb{R}^{n} \\ w \subset \mathbb{R}^{n} \\ \forall i \in [n], w_{i} \in \{0,1\} \\ \sum_{i=1}^{n} w_{i} = h \\ w_{i_{0}} = 1 \end{array} \right| \\ P_{r} = \min_{\substack{\boldsymbol{\beta} \in \mathbb{R}^{n} \\ w \subset \mathbb{R}^{n} \\ \forall i \in [n], w_{i} \in \{0,1\} \\ \sum_{i=1}^{n} w_{i} = h \\ w_{i_{0}} = 1 \end{array} \right|$$

The variable i_0 is called a **branching** variable

Otherwise: "branch and bound", $\exists i_0 \in [n]$ such that $w_{i_0} \in]0,1[$ so solve two MIP problems:

$$P_{l} = \min_{\substack{\boldsymbol{\beta} \in \mathbb{R}^{p} \\ w \subset \mathbb{R}^{n} \\ \forall i \in [n], w_{i} \in \{0, 1\} \\ \sum_{i=1}^{n} w_{i} = h \\ w_{i_{0}} = 0}} \sum_{i=1}^{n} w_{i}(y_{i} - \langle \boldsymbol{\beta}, x_{i} \rangle)^{2} \quad \left| \begin{array}{c} P_{r} = \min_{\substack{\boldsymbol{\beta} \in \mathbb{R}^{p} \\ w \subset \mathbb{R}^{n} \\ \forall i \in [n], w_{i} \in \{0, 1\} \\ \sum_{i=1}^{n} w_{i} = h \\ w_{i_{0}} = 1 \end{array} \right| \\ P_{r} = \min_{\substack{\boldsymbol{\beta} \in \mathbb{R}^{p} \\ w \subset \mathbb{R}^{n} \\ \forall i \in [n], w_{i} \in \{0, 1\} \\ \sum_{i=1}^{n} w_{i} = h \\ w_{i_{0}} = 1 \end{array} \right|$$

The variable i_0 is called a **branching** variable

Now one has $P = \min(P_l, P_r)$, and one can solve recursively the problems P_r and P_l by proceeding similarly (use a search tree, and in general no need to solve the 2^n sub-problems)

Otherwise: "branch and bound", $\exists i_0 \in [n]$ such that $w_{i_0} \in]0,1[$ so solve two MIP problems:

$$P_{l} = \min_{\substack{\boldsymbol{\beta} \in \mathbb{R}^{p} \\ w \in \mathbb{R}^{n} \\ \forall i \in [n], w_{i} \in \{0,1\} \\ \sum_{i=1}^{n} w_{i} = h \\ \boldsymbol{w}_{i0} = 0}} \sum_{i=1}^{n} w_{i}(y_{i} - \langle \boldsymbol{\beta}, x_{i} \rangle)^{2} \left| P_{r} = \min_{\substack{\boldsymbol{\beta} \in \mathbb{R}^{p} \\ w \in \mathbb{R}^{n} \\ \forall i \in [n], w_{i} \in \{0,1\} \\ \sum_{i=1}^{n} w_{i} = h \\ \boldsymbol{w}_{i0} = 1}} \sum_{i=1}^{n} w_{i}(y_{i} - \langle \boldsymbol{\beta}, x_{i} \rangle)^{2} \right|$$

The variable i_0 is called a **branching** variable

Now one has $P = \min(P_l, P_r)$, and one can solve recursively the problems P_r and P_l by proceeding similarly (use a search tree, and in general no need to solve the 2^n sub-problems)

<u>Rem</u>: other useful bounds are $P^{\text{cvx}} \leq \min(P_l^{\text{cvx}}, P_r^{\text{cvx}}) \leq P$

Otherwise: "branch and bound", $\exists i_0 \in [n]$ such that $w_{i_0} \in]0,1[$ so solve two MIP problems:

$$P_{l} = \min_{\substack{\boldsymbol{\beta} \in \mathbb{R}^{p} \\ w \subset \mathbb{R}^{n} \\ \forall i \in [n], w_{i} \in \{0, 1\} \\ \sum_{i=1}^{n} w_{i} = h \\ w_{i_{0}} = 0}} \sum_{i=1}^{n} w_{i}(y_{i} - \langle \boldsymbol{\beta}, x_{i} \rangle)^{2} \quad \left| \begin{array}{c} P_{r} = \min_{\substack{\boldsymbol{\beta} \in \mathbb{R}^{p} \\ w \subset \mathbb{R}^{n} \\ \forall i \in [n], w_{i} \in \{0, 1\} \\ \sum_{i=1}^{n} w_{i} = h \\ w_{i_{0}} = 1 \end{array} \right| \\ P_{r} = \min_{\substack{\boldsymbol{\beta} \in \mathbb{R}^{p} \\ w \subset \mathbb{R}^{n} \\ \forall i \in [n], w_{i} \in \{0, 1\} \\ \sum_{i=1}^{n} w_{i} = h \\ w_{i_{0}} = 1 \end{array} \right|$$

The variable i_0 is called a **branching** variable

Now one has $P = \min(P_l, P_r)$, and one can solve recursively the problems P_r and P_l by proceeding similarly (use a search tree, and in general no need to solve the 2^n sub-problems)

<u>Rem</u>: other useful bounds are $P^{\text{cvx}} \leq \min(P_l^{\text{cvx}}, P_r^{\text{cvx}}) \leq P$

<u>Rem</u>: upper bounds can be obtained by finding feasible points (e.g., rounding)

Fast LTS

Simple alternative: iterative procedure Rousseeuw and Van Driessen(2006)

Algorithm: FAST LTS

return β^t, H^t

Fast LTS

Simple alternative: iterative procedure Rousseeuw and Van Driessen(2006)

Algorithm: FAST LTS

 $\underline{\mathsf{Rem}}: \ Q(H^{t+1}, \boldsymbol{\beta}^{t+1}) \leq Q(H^{t+1}, \boldsymbol{\beta}^{t}) \leq Q(H^{t}, \boldsymbol{\beta}^{t})$

Another simpler alternative : Fast LTS

the update

$$H^{t+1} \leftarrow \underset{H:\#H=h}{\arg\min} \left\| X_H \boldsymbol{\beta}^t - \mathbf{y}_H \right\|^2$$

can be obtained in a closed form by sorting; cost= $O(n\log(n))$ or less if h is small (use: np.partition in numpy)

Another simpler alternative : Fast LTS

the update

$$H^{t+1} \leftarrow \underset{H:\#H=h}{\arg\min} \left\| X_H \boldsymbol{\beta}^t - \mathbf{y}_H \right\|^2$$

can be obtained in a closed form by sorting; cost= $O(n \log(n))$ or less if h is small (use: np.partition in numpy)

inner solver needed for the second update:

$$\boldsymbol{\beta}^{t+1} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\beta}} \| X_{H^{t+1}} \boldsymbol{\beta} - \mathbf{y}_{H^{t+1}} \|^2$$

A second stopping criteria is then needed; possibly do not solve too precisely the problem at each step

Another simpler alternative : Fast LTS

the update

$$H^{t+1} \leftarrow \underset{H:\#H=h}{\arg\min} \left\| X_H \boldsymbol{\beta}^t - \mathbf{y}_H \right\|^2$$

can be obtained in a closed form by sorting; cost= $O(n \log(n))$ or less if h is small (use: np.partition in numpy)

inner solver needed for the second update:

$$\boldsymbol{\beta}^{t+1} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\beta}} \| X_{H^{t+1}} \boldsymbol{\beta} - \mathbf{y}_{H^{t+1}} \|^2$$

A second stopping criteria is then needed; possibly do not solve too precisely the problem at each step

 initialization is tricky (*e.g.*, similar to K-means issues), might use several initialization

Summary on optimizing LTS

2 directions:

Mixed Integer Programming

- pros: bounds / certificate for optimality
- cons: more complex to implement, need of specific solvers
- Alternate minimization
 - pros: simple to implement
 - cons: initialization, no guarantee (only convergence to local minimum)

<u>Rem</u>: hybrid method could be useful, as MIP can benefit from a nicer initialization (through nicer upper bounds) <u>Rem</u>: "continuation" method can also be proposed, *i.e.*, start by small h (fast to solve) and then increase h progressively

LTS extensions through regularization⁵

Adapt to high dimensional constraints using regularization:

$$(\hat{\boldsymbol{\beta}}, \hat{H}) \in \operatorname*{arg\,min}_{\substack{H \subset [n]: \#H = h \\ \boldsymbol{\beta} \in \mathbb{R}^p}} Q(H, \boldsymbol{\beta}) + h\lambda \operatorname{pen}(\boldsymbol{\beta})$$

where $Q(H, \boldsymbol{\beta}) = \|X_H \boldsymbol{\beta} - \mathbf{y}_H\|^2 = \sum_{i \in H} (y_i - \langle \boldsymbol{\beta}, x_i \rangle)^2$

- Ridge penalty (as seen earlier): $pen(\beta) = ||\beta||^2$
- Lasso penalty for sparsity enforcing: $pen(\beta) = \|\beta\|_1$
- etc.

<u>Rem</u>: such approaches loose regression equivariance by enforcing specific constraints on the targeted solution (*e.g.*, sparsity)

⁵A. Alfons, C. Croux, and S. Gelper. "Sparse least trimmed squares regression for analyzing high-dimensional large data sets". In: *Ann. Appl. Stat.* 7.1 (2013), pp. 226–248.

References and supplementary material

For extensions to joint estimation of β and noise level σ cf.
 Ch. 6, Maronna et al. (2006)

 $\label{eq:ample} \begin{array}{ll} \underline{\mathsf{Example}}: & \mbox{consider for } \hat{\pmb{\beta}} \mbox{ being the LTS} \\ \hat{\sigma}^2 = \frac{1}{h} \sum_{i=1}^h (r^2(\hat{\pmb{\beta}}))_{i:n}, \end{array}$

- Heteroscedastic models (case where the noise level differs for each observations) Ch. 6, Maronna et al. (2006)
- branch and bound: https://web.stanford.edu/class/ee3920/bb.pdf

References I

- Alfons, A., C. Croux, and S. Gelper. "Sparse least trimmed squares regression for analyzing high-dimensional large data sets". In: *Ann. Appl. Stat.* 7.1 (2013), pp. 226–248.
- Bloomfield, P. and W. L. Steiger. Least absolute deviations. Vol. 6. Progress in Probability and Statistics. Theory, applications, and algorithms. Birkhäuser Boston, Inc., Boston, MA, 1983, pp. xiv+349.
- Donoho, D. L. "Breakdown properties of multivariate location estimators". PhD thesis. Harvard University, 1982.
- Maronna, R. A., R. D. Martin, and V. J. Yohai. Robust statistics: Theory and methods. Chichester: John Wiley & Sons, 2006.
- Rousseeuw, P. J. and A. M. Leroy. Robust regression and outlier detection. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. New York: John Wiley & Sons Inc., 1987, pp. xvi+329.

References II

Rousseeuw, P. J. and K. Van Driessen. "Computing LTS Regression for Large Data Sets". In: *Data Mining and Knowledge Discovery* 12.1 (2006), pp. 29–45.