A TWO-STAGE DENOISING FILTER: THE PREPROCESSED YAROSLAVSKY FILTER E. Arias-Castro[†] J. Salmon * R. Willett *

* Duke University, ECE Department, Durham, NC, USA — [†]Department of Mathematics, University of California, San Diego, CA, USA.

PROBLEM FORMULATION

We observe noisy samples $\{y_i \in \mathbb{R} : i \in I_n^d\}$ (with $I_n := \{1, \ldots, n\}$) of the target function $f : [0,1]^d \rightarrow [0,1]$ from a **cartoon class (***i.e.,* with Holder α -smooth surfaces and Lipschitz boundary) at n^d design points $\{x_i \in \mathbb{R}^d : i \in I_n^d\}$ corrupted by AWGN ($\sigma^2 > 0$), $\{\varepsilon_i \in \mathbb{R} : i \in I_n^d\}$, as follows

 $y_i = f(x_i) + \varepsilon_i, \quad i \in I_n^d.$

NEIGHBORHOOD FILTERS

We consider neighborhood filters of the form $\widehat{f}_i = rac{\Sigma_{j \in I_n^d} \, \omega(i,j) \, y_j}{\Sigma_{k \in I_n^d} \, \omega(i,k)}.$

where the weights $\omega(i, j)$ (may) depend on the observation y. For $\alpha > 1$ we incorporate local polynomial regression to adapt to higher orders of smoothness.

Linear filtering (LF): Only spatial proximity is used here, so for a kernel K and a bandwidth h > 0, the weights can be written $\omega(i,j) = K_h(x_i, x_j),$

where $K_h(x_i, x_j) = K(\frac{x_i}{h}, \frac{x_j}{h})$ for any sample points x_i and x_j . Weight oracle (WO): The weights are based on the true image f:

 $w_{i,j} := K_h(x_i, x_j) \mathbb{I}_{\{|f_i - f_j| < h_y\}}.$

Again, K and h control the spatial proximity; the photometric bandwidth h_v controls the photometric proximity.

Yaroslavsky's filter (YF): The similarity between two pixels is based on spatial distance and on the relative proximity of image intensity: $\omega(i,j) = K_h(x_j, x_j) \mathbb{I}_{\{|y_i - y_j| < h_y\}}.$

LF, MSE=9.13e+01

WavCS, MSE=7.89e+01

Curvelet, MSE=7.52e+01

(1)

(2)

(3)

(4)

(5)

PATCH BASED FILTERS

centered at x_i . The weights for NLM are: $\omega(i,j) = K_h(x_i,x_j) \mathbb{I}_{\{\|\mathbf{y}_{\mathsf{P}_i} - \mathbf{y}_{\mathsf{P}_j}\| < h_y\}}.$

Non-Local Means Average (NLM-Av.): A fast approximation to NLM is effective on cartoon images: compute the average of pixels within each patch, and use the differences of averages (here $\overline{y}_{\mathsf{P}_i}$ is the pixel average on patch i) to estimate photometric distances:

THE PREPROCESSED YAROSLAVSKY FILTER

• Compute an initial estimate of f, denoted f := denoise(y). Use f to compute the weights in a Yaroslavsky-type filter

 $w_{i,j}^{\mathrm{PY}} := K_h(x_i, x_j) \mathbb{I}_{\{|\tilde{f}_i - \tilde{f}_j| < h_u^{\mathrm{PY}}\}}.$ (8)Possible first step considered for $\hat{\mathbf{f}}$ are: wavelet with cycle spinning, Curvelet and Linear Filtering, leading to YFWav, YFCurvelet and NLM-Av.

THEORETICAL RESULTS

The Weight oracle $\hat{\mathbf{f}}_h^{\mathrm{WO}}$ achieves minimax rate on the cartoon class: $\inf_{h} \sup_{f \in \mathcal{F}} \mathrm{MSE}_f(\mathbf{f}, \mathbf{f}_h^{\mathrm{WO}}) \simeq \mathcal{R}^{\mathrm{WO}} := (\sigma^2 / n^d)^{2\alpha/(d+2\alpha)},$

For small noise (*i.e.*, $\sigma^2 = O(1/\sqrt{\log n})$), then $|y_i - y_j|$ is a close approximation to $|f_i - f_j|$, the YF performs nearly as well as WO. **Theorem:**

Suppose an estimator $\tilde{\mathbf{f}}$ satisfies for any $f \in \mathcal{F}$ the following deviation bound, with probability at least $1 - \delta$:

 $|\tilde{f}_i - f_i|^2 \leq M, \quad \forall i \in I_n^d \text{ such that } B(x_i, \tilde{h}) \cap \partial \Omega = \emptyset.$ where $\partial \Omega$ is the boundary between the smooth surfaces, then if M = o(1), for $\hat{\mathbf{f}}_{h}^{\mathrm{PY}}$ defined with weights as in (8), one has $\inf_{h \in \mathcal{T}} \operatorname{MSE}_{f}(\mathbf{f}, \widehat{\mathbf{f}}_{h}^{\mathrm{PY}}) \asymp \widetilde{h} + \delta + (\sigma^{2}/n^{d})^{2\alpha/(d+2\alpha)},$

and the optimal choice of bandwidths are $h \asymp h^{WO}$ and $h_y \asymp 1$.

VISUAL RESULTS

YF,

NLM, MSE=3.73e+01

Non-Local Means (NLM): For the nonlocal means (NLM), one estimates the photometric distance between pixels using patches of noisy pixels. For $h_{\rm P} > 0$, let $y_{\rm P_i}$ be the vector of pixel values over the patch

(6)

 $\omega(i,j) = K_h(x_i, x_j) \mathbb{I}_{\{|\overline{y}_{\mathsf{P}_i} - \overline{y}_{\mathsf{P}_i}| < h_y\}},$

(7)

Results averaged over 100 Gaussian noise replicas on common images.

Size	LF	Wav	Curv.	YF	YFWav	YFCurv.	NLM-Av	NLM	BM3D
256^{2}	0.03 .s	0.08 .s	0.33 .s	0.16 .s	0.26 .s	0.48 .s	0.15 .s	14.75 .s	1.18 .s
512^{2}	0.08 .s	0.53 .s	1.13 .s	0.72 .s	1.28 .s	1.75 .s	0.63 .s	60.00 .s	4.99 .s
1024^{2}	0.18 .s	2.97 .s	3.90 .s	2.89 .s	5.94 .s	6.47 .s	2.48 .s	241.87 .s	21.42 .s

Computing times for Matlab mex/C implementations (except Curvelet is pure Matlab) on an Intel Core i7 CPU 2.67GHz.

This work was supported by NSF CAREER Award No. CCF-06-43947 and ARO Grant No. W911NF-09-1-0262.

Online code : http://josephsalmon.eu/

NLM-Av., MSE=2.69e+01

YFWavCS, MSE = 2.52e + 01

YFCurvelet, MSE = 1.59e + 01

	Blob	Swoosh	Ridges	Cameraman
			$\sigma = 5$	
LF	35.33	40.29	48.80	437.79
WavCS	1.40	1.78	1.65	14.74
Curvelet	5.12	4.88	1.58	28.96
YF	1.27	2.10	16.95	14.57
NLM-Av.	0.86	2.39	4.19	315.96
YFWavCS	0.78	1.21	1.49	14.12
YFCurvelet	1.16	2.02	1.81	24.42
NLM	0.96	1.14	2.11	13.40
BM3D	1.22	1.20	0.88	9.95
WO	1.61	2.15	36.36	32.59
			$\sigma = 20$	
LF	43.19	48.17	56.62	445.65
WavCS	15.31	20.15	14.98	102.07
Curvelet	19.20	34.32	10.66	148.92
YF	17.00	22.00	189.05	120.11
NLM-Av.	5.06	7.39	18.95	345.69
YFWavCS	4.19	6.41	13.57	88.76
YFCurvelet	3.22	4.67	13.88	114.92
NLM	4.03	4.74	25.98	91.72
BM3D	5.72	7.04	8.94	59.36
WO	2.66	3.19	38.00	34.24

MSE PERFORMANCE

TIME PERFORMANCE

ACKNOWLEDGEMENTS

BM3D, MSE = 2.29e + 01

WO, MSE=9.16e+00