
A TWO-STAGE DENOISING FILTER: THE PREPROCESSED YAROSLAVSKY FILTER
J. Salmon ? R. Willett ? E. Arias-Castro†

? Duke University, ECE Department, Durham, NC, USA — †Department of Mathematics, University of California, San Diego, CA, USA.

PROBLEM FORMULATION

We observe noisy samples {yi ∈ R : i ∈ Idn} (with In := {1, . . . , n}) of
the target function f : [0, 1]d → [0, 1] from a cartoon class (i.e., with
Holder α-smooth surfaces and Lipschitz boundary) at nd design points
{xi ∈ Rd : i ∈ Idn} corrupted by AWGN (σ2 > 0), {εi ∈ R : i ∈ Idn}, as
follows

yi = f (xi) + εi, i ∈ Idn. (1)

Original,
MSE=0

Noisy,
MSE=2.51e+03

NEIGHBORHOOD FILTERS

We consider neighborhood filters of the form

f̂i =
∑
j∈Idn ω(i, j) yj∑
k∈Idn ω(i, k)

. (2)

where the weights ω(i, j) (may) depend on the observation y. For α > 1
we incorporate local polynomial regression to adapt to higher orders of
smoothness.
Linear filtering (LF): Only spatial proximity is used here, so for a kernel
K and a bandwidth h > 0, the weights can be written

ω(i, j) = Kh(xi, xj) , (3)
where Kh(xi, xj) = K(xih ,

xj
h ) for any sample points xi and xj.

Weight oracle (WO): The weights are based on the true image f :
wi,j := Kh(xi, xj)I{|fi−fj|<hy}. (4)

Again, K and h control the spatial proximity; the photometric bandwidth
hy controls the photometric proximity.
Yaroslavsky’s filter (YF): The similarity between two pixels is based
on spatial distance and on the relative proximity of image intensity:

ω(i, j) = Kh(xj, xj) I{|yi−yj|<hy}. (5)

PATCH BASED FILTERS

Non-Local Means (NLM): For the nonlocal means (NLM), one es-
timates the photometric distance between pixels using patches of noisy
pixels. For hP > 0, let yPi be the vector of pixel values over the patch
centered at xi. The weights for NLM are:

ω(i, j) = Kh(xi, xj) I{‖yPi−yPj‖<hy}. (6)
Non-Local Means Average (NLM-Av.): A fast approximation to
NLM is effective on cartoon images: compute the average of pixels within
each patch, and use the differences of averages (here yPi is the pixel average
on patch i) to estimate photometric distances:

ω(i, j) = Kh(xi, xj) I{|yPi−yPj|<hy}, (7)

THE PREPROCESSED YAROSLAVSKY FILTER

•Compute an initial estimate of f , denoted f̃ := denoise(y).
•Use f̃ to compute the weights in a Yaroslavsky-type filter

wPY
i,j := Kh(xi, xj)I{|f̃i−f̃j|<hPY

y }. (8)
Possible first step considered for f̃ are: wavelet with cycle spinning,
Curvelet and Linear Filtering, leading to YFWav, YFCurvelet and NLM-Av.

THEORETICAL RESULTS

The Weight oracle f̂WO
h achieves minimax rate on the cartoon class:

inf
h

sup
f∈F

MSEf(f , fWO
h ) � RWO := (σ2/nd)2α/(d+2α),

For small noise (i.e., σ2 = O(1/
√

log n)), then |yi− yj| is a close approx-
imation to |fi− fj|, the YF performs nearly as well as WO.
Theorem:
Suppose an estimator f̃ satisfies for any f ∈ F the following deviation
bound, with probability at least 1− δ:

|f̃i− fi|2 ≤M, ∀i ∈ Idn such that B(xi, h̃) ∩ ∂Ω = ∅.
where ∂Ω is the boundary between the smooth surfaces, then ifM = o(1),
for f̂PY

h defined with weights as in (8), one has
inf
h

sup
f∈F

MSEf(f , f̂PY
h ) � h̃ + δ + (σ2/nd)2α/(d+2α),

and the optimal choice of bandwidths are h � hWO and hy � 1.

MSE PERFORMANCE

Blob Swoosh Ridges Cameraman
σ = 5

LF 35.33 40.29 48.80 437.79
WavCS 1.40 1.78 1.65 14.74
Curvelet 5.12 4.88 1.58 28.96
YF 1.27 2.10 16.95 14.57
NLM-Av. 0.86 2.39 4.19 315.96
YFWavCS 0.78 1.21 1.49 14.12
YFCurvelet 1.16 2.02 1.81 24.42
NLM 0.96 1.14 2.11 13.40
BM3D 1.22 1.20 0.88 9.95
WO 1.61 2.15 36.36 32.59

σ = 20
LF 43.19 48.17 56.62 445.65
WavCS 15.31 20.15 14.98 102.07
Curvelet 19.20 34.32 10.66 148.92
YF 17.00 22.00 189.05 120.11
NLM-Av. 5.06 7.39 18.95 345.69
YFWavCS 4.19 6.41 13.57 88.76
YFCurvelet 3.22 4.67 13.88 114.92
NLM 4.03 4.74 25.98 91.72
BM3D 5.72 7.04 8.94 59.36
WO 2.66 3.19 38.00 34.24

Results averaged over 100 Gaussian noise replicas on common images.
TIME PERFORMANCE

Size LF Wav Curv. YF YFWav YFCurv. NLM-Av NLM BM3D
2562 0.03 .s 0.08 .s 0.33 .s 0.16 .s 0.26 .s 0.48 .s 0.15 .s 14.75 .s 1.18 .s
5122 0.08 .s 0.53 .s 1.13 .s 0.72 .s 1.28 .s 1.75 .s 0.63 .s 60.00 .s 4.99 .s
10242 0.18 .s 2.97 .s 3.90 .s 2.89 .s 5.94 .s 6.47 .s 2.48 .s 241.87 .s 21.42 .s

Computing times for Matlab mex/C implementations (except Curvelet is
pure Matlab) on an Intel Core i7 CPU 2.67GHz.

ACKNOWLEDGEMENTS

This work was supported by NSF CAREER Award No. CCF-06-43947 and
ARO Grant No. W911NF-09-1-0262.

Online code : http://josephsalmon.eu/

VISUAL RESULTS

LF,
MSE=9.13e+01

WavCS,
MSE=7.89e+01

Curvelet,
MSE=7.52e+01

YF,
MSE=1.29e+02

NLM,
MSE=3.73e+01

NLM-Av.,
MSE=2.69e+01

YFWavCS,
MSE=2.52e+01

YFCurvelet,
MSE=1.59e+01

BM3D,
MSE=2.29e+01

WO,
MSE=9.16e+00


