Generalized Concomitant Multi-Task Lasso for sparse multimodal regression

Joseph Salmon

http://josephsalmon.eu IMAG, Univ Montpellier, CNRS Montpellier, France

Joint work with: **Mathurin Massias** (INRIA, Parietal Team) **Olivier Fercoq** (Télécom ParisTech) **Alexandre Gramfort** (INRIA, Parietal Team)

Signals can often be represented combining few atoms / features :

Fourier decomposition for sounds

Signals can often be represented combining few atoms / features :

- Fourier decomposition for sounds
- ► Wavelet for images (1990's)

Signals can often be represented combining few atoms / features :

- Fourier decomposition for sounds
- ► Wavelet for images (1990's)
- Dictionary learning for images (late 2000's)

Signals can often be represented combining few atoms / features :

- Fourier decomposition for sounds
- ► Wavelet for images (1990's)
- Dictionary learning for images (late 2000's)
- More inverse problems

Simplest model: standard sparse regression

 $y \in \mathbb{R}^n$: a signal

 $X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}$: dictionary of atoms/features

 $\label{eq:assumption} \begin{array}{l} \underline{ \text{Assumption}} : \text{ signal well} \\ \hline \text{approximated by a } \text{sparse} \\ \text{combination } \beta^* \in \mathbb{R}^p : y \approx X\beta^* \end{array}$

Objective(s): find $\hat{\beta}$

- Estimation: $\hat{\beta} \approx \beta^*$
- Prediction: $X\hat{\beta} \approx X\beta^*$
- Support recovery: $\operatorname{supp}(\hat{\beta}) \approx \operatorname{supp}(\beta^*)$

<u>Constraints</u>: large p, sparse β^*

The ℓ_0 penalty to enforce sparsity

where $\|\beta\|_0 = \operatorname{card}(\{j \in \llbracket 1, p \rrbracket, \beta_j \neq 0\}) = \operatorname{card}(\operatorname{supp}(\beta))$

Combinatorial problem: "NP-hard"⁽¹⁾

 \hookrightarrow Exact resolution requires Least-Squares (LS) solutions for all sub-models, *i.e.*, compute LS for all possible supports (up to 2^p)

•
$$p = 10 \hookrightarrow \text{possible}$$
: $\approx 10^3$ least squares

•
$$p = 30 \hookrightarrow$$
 hard: $pprox 10^{10}$ least squares

<u>Rem:</u> mixed integer programming (MIP) fine for small problems⁽²⁾

⁽¹⁾B. K. Natarajan. "Sparse approximate solutions to linear systems". In: *SIAM J. Comput.* 24.2 (1995), pp. 227–234.

⁽²⁾D. Bertsimas, A. King, and R. Mazumder. "Best subset selection via a modern optimization lens". In: *Ann. Statist.* 44.2 (2016), pp. 813–852.

The ℓ_1 penalty: Lasso and variants

Vocabulary: the "Modern least square"⁽³⁾

Statistics: Lasso⁽⁴⁾

Signal processing variant: Basis Pursuit⁽⁵⁾

Solutions are sparse (sparsity level controlled by λ)

⁽³⁾E. J. Candès, M. B. Wakin, and S. P. Boyd. "Enhancing Sparsity by Reweighted l₁ Minimization". In: J. Fourier Anal. Applicat. 14.5-6 (2008), pp. 877–905.

(4) R. Tibshirani. "Regression Shrinkage and Selection via the Lasso". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 58.1 (1996), pp. 267–288.

(5)S. S. Chen, D. L. Donoho, and M. A. Saunders. "Atomic decomposition by basis pursuit". In: SIAM J. Sci. Comput. 20.1 (1998), pp. 33–61.

M/EEG inverse problem for brain imaging

- sensors: magneto- and electro-encephalogram measurements during a cognitive experiment
- sources: brain locations

MEG elements: magnometers and gradiometers

Device

Sensors

Detail of a sensor

Noise is different for EEG / MEG (magnometers and gradiometers)

▶ Different sensors ⇒ different noise structures

The M/EEG inverse problem: modeling

A multi-task framework

Multi-task regression:

- n observations (e.g., number of sensors)
- q tasks (e.g., temporal information)

► p features

- $Y \in \mathbb{R}^{n \times q}$ observation matrix
- $X \in \mathbb{R}^{n \times p}$ forward matrix

$$Y = XB^* + E$$

where

- $\mathbf{B}^* \in \mathbb{R}^{p imes q}$: true source activity matrix
- $E \in \mathbb{R}^{n \times q}$: additive white Gaussian noise (for simplicity)

Notation remark: capital letters refer to matrices

Multi-tasks penalties⁽⁶⁾

Popular convex penalties considered:

$$\hat{\mathbf{B}} \in \operatorname*{arg\,min}_{\mathbf{B} \in \mathbb{R}^{p \times q}} \left(\frac{1}{2nq} \left\| Y - X\mathbf{B} \right\|^2 + \lambda \Omega(\mathbf{B}) \right)$$

Sparse support: no structure

Penalty: Lasso type

$$\Omega(\mathbf{B}) = \|\mathbf{B}\|_1 = \sum_{j=1}^p \sum_{k=1}^q |\mathbf{B}_{j,k}|$$

Parameter $\hat{\mathbf{B}} \in \mathbb{R}^{p \times q}$

⁽⁶⁾G. Obozinski, B. Taskar, and M. I. Jordan. "Joint covariate selection and joint subspace selection for multiple classification problems". In: *Statistics and Computing* 20.2 (2010), pp. 231–252.

Multi-tasks penalties⁽⁶⁾

Popular convex penalties considered: Multi-Task Lasso (MTL)

$$\hat{\mathbf{B}} \in \underset{\mathbf{B} \in \mathbb{R}^{p \times q}}{\operatorname{arg\,min}} \left(\frac{1}{2nq} \| Y - X\mathbf{B} \|^2 + \lambda \Omega(\mathbf{B}) \right)$$

Sparse support: group structure

Penalty: Group-Lasso type

$$\Omega(\mathbf{B}) = \|\mathbf{B}\|_{2,1} = \sum_{j=1}^{p} \|\mathbf{B}_{j,:}\|_{2}$$

where $B_{j,:}$ the *j*-th line of B

⁽⁶⁾G. Obozinski, B. Taskar, and M. I. Jordan. "Joint covariate selection and joint subspace selection for multiple classification problems". In: *Statistics and Computing* 20.2 (2010), pp. 231–252.

Table of Contents

Calibrating $\boldsymbol{\lambda}$ and noise level estimation

Multi-task case and noise structure

Block homoscedastic model

Experiments

Step back on the Lasso case (q = 1)

Sparse Gaussian model: $y = X\beta^* + \sigma_*\varepsilon$

- $y \in \mathbb{R}^n$: observation
- $X \in \mathbb{R}^{n \times p}$: design matrix
- $\beta^* \in \mathbb{R}^p$: signal to recover; <u>unknown</u>
- $\|\beta^*\|_0 = s^*$: sparsity level (small w.r.t. p); s^* unknown

•
$$\varepsilon \sim \mathcal{N}(0, \sigma_*^2 \operatorname{Id}_n); \sigma_* \operatorname{unknown}$$

Lasso reminder :

$$\hat{\beta}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{\|y - X\beta\|^2}{2n} + \lambda \, \|\beta\|_1$$

Lasso theory^{(7), (8)} : (fairly) well understood

Theorem

For Gaussian noise model and X satisfying the "Restricted Eigenvalue" property, for $\lambda = 2\sigma_* \sqrt{\frac{2\log(p/\delta)}{n}}$, then $\frac{1}{n} \left\| X\beta^* - X\hat{\beta}^{(\lambda)} \right\|^2 \leq \frac{18}{\kappa_{s^*}^2} \frac{\sigma_*^2 s^*}{n} \log\left(\frac{p}{\delta}\right)$

with probability $1 - \delta$, where $\hat{\beta}^{(\lambda)}$ is a Lasso solution

<u>Rem</u>: optimal rate in the minimax sense (up to constant/log term) <u>Rem</u>: $\kappa_{s^*}^2$ controls the conditioning of X when extracting the s^* columns of X associated to the true support

BUT σ_* is <u>unknown</u> in practice !

(7) P. J. Bickel, Y. Ritov, and A. B. Tsybakov. "Simultaneous analysis of Lasso and Dantzig selector". In: Ann. Statist. 37.4 (2009), pp. 1705–1732.

(8) A. S. Dalalyan, M. Hebiri, and J. Lederer. "On the Prediction Performance of the Lasso". In: Bernoulli 23.1 (2017), pp. 552–581.

Lasso theory^{(7), (8)} : (fairly) well understood

Theorem

For Gaussian noise model and X satisfying the "Restricted Eigenvalue" property, for $\lambda = 2\sigma_* \sqrt{\frac{2\log(p/\delta)}{n}}$, then $\frac{1}{n} \left\| X\beta^* - X\hat{\beta}^{(\lambda)} \right\|^2 \leq \frac{18}{\kappa_{s^*}^2} \frac{\sigma_*^2 s^*}{n} \log\left(\frac{p}{\delta}\right)$

with probability $1 - \delta$, where $\hat{\beta}^{(\lambda)}$ is a Lasso solution

<u>Rem</u>: optimal rate in the minimax sense (up to constant/log term) <u>Rem</u>: $\kappa_{s^*}^2$ controls the conditioning of X when extracting the s^* columns of X associated to the true support

BUT σ_* is <u>unknown</u> in practice !

⁽⁷⁾ P. J. Bickel, Y. Ritov, and A. B. Tsybakov. "Simultaneous analysis of Lasso and Dantzig selector". In: Ann. Statist. 37.4 (2009), pp. 1705–1732.

⁽⁸⁾A. S. Dalalyan, M. Hebiri, and J. Lederer. "On the Prediction Performance of the Lasso". In: *Bernoulli* 23.1 (2017), pp. 552–581.

Soft-Thresholding: Lasso for orthogonal design

Closed form solution for 1D-problem (p = 1): Soft-Thresholding

$$\eta_{\mathrm{ST},\lambda}(y) := \operatorname*{arg\,min}_{\beta \in \mathbb{R}} \left(\frac{(y-\beta)^2}{2} + \lambda |\beta| \right)$$
$$= \operatorname{sign}(y)(|y| - \lambda)_+$$

with
$$(\cdot)_+ := \max(0, \cdot)$$

Extension for $X = Id_p$: component-wise soft thresholding

"Universal"⁽⁹⁾ λ choice ($X = Id_n$)

⁽⁹⁾D. L. Donoho and I. M. Johnstone. "Adapting to unknown smoothness via wavelet shrinkage". In: J. Amer. Statist. Assoc. 90.432 (1995), pp. 1200–1224.

"Universal"⁽⁹⁾ λ choice ($X = Id_n$)

(9) D. L. Donoho and I. M. Johnstone. "Adapting to unknown smoothness via wavelet shrinkage". In: J. Amer. Statist. Assoc. 90.432 (1995), pp. 1200–1224.

Joint estimation of β and σ

How to calibrate (theoretically) λ when σ_* is unknown?

Intuitive idea: initialize λ

- run Lasso with λ ; get β
- estimate σ with residuals: $\sigma = \|y X\beta\|/\sqrt{n}$
- $\blacktriangleright\,$ re-run Lasso with $\lambda\propto\sigma$
- iterate (until convergence?)

<u>*N.B.*</u>: exactly the Scaled-Lasso⁽¹⁰⁾ implementation

Concomitant Lasso⁽¹²⁾

$$(\beta^{(\lambda)}, \sigma^{(\lambda)}) \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p}, \sigma > 0} \left(\frac{\|y - X\beta\|^{2}}{2n\sigma} + \frac{\sigma}{2} + \lambda \, \|\beta\|_{1} \right)$$

- $\frac{\sigma}{2}$: penalty over the noise level, roots in robust estimation⁽¹¹⁾
- ▶ jointly convex program: $(a, b) \mapsto a^2/b$ is convex

(11) P. J. Huber. Robust Statistics. John Wiley & Sons Inc., 1981.
 (12) A. B. Owen. "A robust hybrid of lasso and ridge regression". In: Contemporary Mathematics 443 (2007), pp. 59–72.

Concomitant performance

Theorem⁽¹³⁾

For Gaussian noise model and X satisfying the "Restricted Eigenvalue" property and $\lambda = 2\sqrt{\frac{2\log(p/\delta)}{n}}$, then $\frac{1}{n} \left\| X\beta^* - X\hat{\beta}^{(\lambda)} \right\|^2 \leq \frac{18}{\kappa_{s^*}^2} \frac{\sigma_*^2 s_*}{n} \log\left(\frac{p}{\delta}\right)$

with "high" probability, where $\hat{\beta}^{(\lambda)}$ is a Concomitant Lasso solution

<u>Rem</u>: provide same rate as Lasso, without knowing σ_*

<u>Rem</u>: theoretically important, though λ still has to be calibrated...

⁽¹³⁾T. Sun and C.-H. Zhang. "Scaled sparse linear regression". In: Biometrika 99.4 (2012), pp. 879–898.

Link with $\sqrt{\text{Lasso}}^{(14)}$

 \blacktriangleright Independently, $\sqrt{{\rm Lasso}}$ analyzed to get " σ free" choice of λ

$$\hat{\beta}_{\sqrt{\text{Lasso}}}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p}} \left(\frac{1}{\sqrt{n}} \left\| y - X\beta \right\| + \lambda \left\| \beta \right\|_{1} \right)$$

• Connections with Concomitant Lasso: $\left(\hat{\beta}_{\sqrt{\text{Lasso}}}^{(\lambda)}, \hat{\sigma}_{\sqrt{\text{Lasso}}}^{(\lambda)}\right)$ is solution of the Concomitant Lasso when $\hat{\sigma}_{\sqrt{\text{Lasso}}}^{(\lambda)} = \frac{\left\|y - X\hat{\beta}_{\sqrt{\text{Lasso}}}^{(\lambda)}\right\|}{\sqrt{n}} \neq 0$

Rem: non-smooth data fitting term with non-smooth regularization

⁽¹⁴⁾ A. Belloni, V. Chernozhukov, and L. Wang. "Square-root Lasso: pivotal recovery of sparse signals via conic programming". In: *Biometrika* 98.4 (2011), pp. 791–806.

The Smoothed Concomitant Lasso⁽¹⁶⁾

To remove issues for small λ (and σ), we have introduced:

$$\left| (\hat{\beta}^{(\lambda)}, \hat{\sigma}^{(\lambda)}) \in \underset{\beta \in \mathbb{R}^{p}, \sigma \geq \underline{\sigma}}{\operatorname{arg\,min}} \frac{\|y - X\beta\|^{2}}{2n\sigma} + \frac{\sigma}{2} + \lambda \, \|\beta\|_{1} \right|$$

- With prior information on the minimal noise level, one can set <u>a</u> as this bound (recovers Concomitant Lasso)
- Setting $\underline{\sigma} = \epsilon$, smoothing theory asserts that $\frac{\epsilon}{2}$ -solutions for the smoothed problem provide ϵ -solutions for the $\sqrt{\text{Lasso}}^{(15)}$

⁽¹⁵⁾Y. Nesterov. "Smooth minimization of non-smooth functions". In: Math. Program. 103.1 (2005), pp. 127–152.

⁽¹⁶⁾E. Ndiaye et al. "Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression". In: NCMIP. 2017.

Smoothing aparté^{(17), (18)}

 $\label{eq:model} \begin{array}{l} \underline{\text{Motivation}} \colon \text{smooth a non-smooth function } f \text{ to ease optimization} \\ \underline{\text{Smoothing}} \colon \text{for } \mu > 0 \text{, a "smoothed" version of } f \text{ is } f_{\mu} \\ \hline f_{\mu} = \mu \omega \left(\frac{\cdot}{\mu}\right) \Box f, \quad \text{where} \quad f \Box g(x) = \inf_{u} \{f(u) + g(x-u)\} \end{array}$

• ω is a predefined smooth function (s.t. $\nabla \omega$ is Lipschitz)

	Fourier: $\mathcal{F}(f)$	Fenchel/Legendre: f^*
	convolution: *	inf-convolution:
Kernel smoothing analogy:	$\mathcal{F}(f \star g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$	$(f \Box g)^* = f^* + g^*$
	Gaussian : $\mathcal{F}(g) = g$	$\omega = \frac{\ \cdot\ ^2}{2}: \omega^* = \omega$
	$f_h = \frac{1}{h}g\left(\frac{\cdot}{h}\right) \star f$	$f_{\mu} = \mu \omega \left(rac{\cdot}{\mu} ight) \Box f$

(17)Y. Nesterov. "Smooth minimization of non-smooth functions". In: *Math. Program.* 103.1 (2005), pp. 127–152.
(18)A. Beck and M. Teboulle. "Smoothing and first order methods: A unified framework". In: *SIAM J. Optim.* 22.2 (2012), pp. 557–580.

Smoothing aparté^{(17),(18)}

 $\begin{array}{l} \underline{\text{Motivation}}: \text{ smooth a non-smooth function } f \text{ to ease optimization} \\ \underline{\text{Smoothing}}: \text{ for } \mu > 0 \text{, a "smoothed" version of } f \text{ is } f_{\mu} \\ \hline f_{\mu} = \mu \omega \left(\frac{\cdot}{\mu}\right) \Box f, \quad \text{where} \quad f \Box g(x) = \inf_{u} \{f(u) + g(x - u)\} \\ \end{array}$

• ω is a predefined smooth function (s.t. $\nabla \omega$ is Lipschitz)

	Fourier: $\mathcal{F}(f)$	Fenchel/Legendre: f^*
	convolution: *	inf-convolution:
Kernel smoothing analogy:	$\mathcal{F}(f \star g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$	$(f\Box g)^* = f^* + g^*$
	$Gaussian:\ \mathcal{F}(g)=g$	$\omega = \frac{\ \cdot\ ^2}{2}: \omega^* = \omega$
	$f_h = \frac{1}{h}g\left(\frac{\cdot}{h}\right) \star f$	$f_{\mu}=\mu\omega\left(rac{\cdot}{\mu} ight)\Box f$

(17) Y. Nesterov. "Smooth minimization of non-smooth functions". In: *Math. Program.* 103.1 (2005), pp. 127–152.
 (¹⁸⁾ A. Beck and M. Teboulle. "Smoothing and first order methods: A unified framework". In: *SIAM J. Optim.*

22.2 (2012), pp. 557-580.

22 / 45

Huberization of the \sqrt{Lasso}

"Huberization":
$$f(z) = \frac{\|z\|}{\sqrt{n}}, \ \mu = \underline{\sigma}, \ \omega(z) = \frac{\|z\|^2}{2} + \frac{1}{2}$$

$$f_{\underline{\sigma}}(z) = \begin{cases} \frac{\|z\|^2}{2n\sigma} + \frac{\sigma}{2}, & \text{if } \frac{\|z\|}{\sqrt{n}} \le \underline{\sigma} \\ \frac{\|z\|}{\sqrt{n}}, & \text{if } \frac{\|z\|}{\sqrt{n}} > \underline{\sigma} \end{cases}$$
$$= \min_{\sigma \ge \underline{\sigma}} \left(\frac{\|z\|^2}{2n\sigma} + \frac{\sigma}{2} \right)$$

Leads to the Smoothed Concomitant Lasso formulation:

$$(\hat{\beta}^{(\lambda)}, \hat{\sigma}^{(\lambda)}) \in \underset{\beta \in \mathbb{R}^{p}, \sigma \geq \underline{\sigma}}{\operatorname{arg\,min}} \left(\frac{\left\| y - X\beta \right\|^{2}}{2n\sigma} + \frac{\sigma}{2} + \lambda \left\| \beta \right\|_{1} \right)$$

Solving the Smooth Concomitant Lasso

$$(\hat{\beta}^{(\lambda)}, \hat{\sigma}^{(\lambda)}) \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p}, \sigma \geq \underline{\sigma}} \frac{\|y - X\beta\|^{2}}{2n\sigma} + \frac{\sigma}{2} + \lambda \|\beta\|_{1}$$

Jointly convex formulation : can be optimized by alternate minimization w.r.t. β and σ (the other parameter being fixed) Alternate iteratively:

Fix
$$\sigma$$
: (approximatively) solve a Lasso problem in β
 $\hat{\beta} \in \underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} \frac{\|y - X\beta\|^2}{2n} + \lambda \sigma \|\beta\|_1$ (Lasso step)

Solving the Smooth Concomitant Lasso

$$(\hat{\beta}^{(\lambda)}, \hat{\sigma}^{(\lambda)}) \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p}, \sigma \geq \underline{\sigma}} \frac{\|y - X\beta\|^{2}}{2n\sigma} + \frac{\sigma}{2} + \lambda \|\beta\|_{1}$$

Jointly convex formulation : can be optimized by alternate minimization w.r.t. β and σ (the other parameter being fixed) Alternate iteratively:

► Fix
$$\sigma$$
: (approximatively) solve a Lasso problem in β
 $\hat{\beta} \in \underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} \frac{\|y - X\beta\|^2}{2n} + \lambda \sigma \|\beta\|_1$ (Lasso step)

Fix
$$\beta$$
: closed form solution to update σ
 $\hat{\sigma} = \max\left(\frac{\|y - X\beta\|}{\sqrt{n}}, \underline{\sigma}\right)$ (Noise estimation step)

Solving the Smooth Concomitant Lasso

$$(\hat{\beta}^{(\lambda)}, \hat{\sigma}^{(\lambda)}) \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p}, \sigma \geq \underline{\sigma}} \frac{\|y - X\beta\|^{2}}{2n\sigma} + \frac{\sigma}{2} + \lambda \|\beta\|_{1}$$

Jointly convex formulation : can be optimized by alternate minimization w.r.t. β and σ (the other parameter being fixed) Alternate iteratively:

► Fix
$$\sigma$$
: (approximatively) solve a Lasso problem in β
 $\hat{\beta} \in \underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} \frac{\|y - X\beta\|^2}{2n} + \lambda \sigma \|\beta\|_1$ (Lasso step)

Fix
$$\beta$$
: closed form solution to update σ
 $\hat{\sigma} = \max\left(\frac{\|y - X\beta\|}{\sqrt{n}}, \underline{\sigma}\right)$ (Noise estimation step)

Table of Contents

Calibrating λ and noise level estimation

Multi-task case and noise structure

Block homoscedastic model

Experiments

Back to multi-task : $Y = XB^* + E$

<u>General case</u>: $Y \in \mathbb{R}^{n \times q}$, $B \in \mathbb{R}^{p \times q}$, and the noise $E \in \mathbb{R}^{n \times q}$ might have some structure evolving along the n samples (sensors)

Back to multi-task : $Y = XB^* + E$

<u>General case</u>: $Y \in \mathbb{R}^{n \times q}$, $B \in \mathbb{R}^{p \times q}$, and the noise $E \in \mathbb{R}^{n \times q}$ might have some structure evolving along the n samples (sensors)

Smoothed Generalized Concomitant Lasso (SGCL):

$$(\hat{B}, \hat{\Sigma}) \in \underset{\substack{B \in \mathbb{R}^{p \times q} \\ \Sigma \in \mathbb{S}^{n}_{++}, \Sigma \succeq \underline{\Sigma}}}{\operatorname{arg\,min}} \quad \frac{\|Y - XB\|_{\Sigma^{-1}}^{2}}{2nq} + \frac{\operatorname{Tr}(\Sigma)}{2n} + \lambda \, \|B\|_{2,1}$$

with $\|R\|_{\Sigma^{-1}}^2 := \operatorname{Tr}(R^{\top}\Sigma^{-1}R)$, and $\underline{\Sigma} := \underline{\sigma} \operatorname{Id}_n$ (for simplicity)

jointly convex formulation

 \blacktriangleright noise penalty on the sum of the eigenvalues of Σ

<u>Beware</u>: Σ not a covariance, more a generalized standard deviation

Solving the SGCL

Jointly convex formulation: alternate minimization still converging

B Update - Σ fixed:

smooth $+ \ell_1$ -type optimization problem, *e.g.*, use Block Coordinate Descent (BCD) to update B row by row

Possible refinements:

- ► (Gap safe) screening rules^{(19), (20)}
- Stong rules⁽²¹⁾
- ► Active sets methods⁽²²⁾ etc.

⁽¹⁹⁾ L. El Ghaoui, V. Viallon, and T. Rabbani. "Safe feature elimination in sparse supervised learning". In: J. Pacific Optim. 8.4 (2012), pp. 667–698.

⁽²⁰⁾ E. Ndiaye et al. "Gap Safe screening rules for sparsity enforcing penalties". In: J. Mach. Learn. Res. 18.128 (2017), pp. 1–33.

⁽²¹⁾ R. Tibshirani et al. "Strong rules for discarding predictors in lasso-type problems". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 74.2 (2012), pp. 245–266.

⁽²²⁾T. B. Johnson and C. Guestrin. "BLITZ: A Principled Meta-Algorithm for Scaling Sparse Optimization". In: *ICML*. 2015, pp. 1171–1179.

Solving the SGCL

Jointly convex formulation: alternate minimization still converging

Σ Update - B fixed:

with R = Y - XB (residuals), the problem can be reformulated $\hat{\Sigma} = \underset{\Sigma \in \mathbb{S}_{++}^n, \Sigma \succeq \Sigma}{\operatorname{arg min}} \left(\frac{1}{2nq} \operatorname{Tr}[R^{\top} \Sigma^{-1} R] + \frac{1}{2n} \operatorname{Tr}(\Sigma) \right)$

<u>Closed-form solution</u> (Spectral clipping):

if $U^{\top} \operatorname{diag}(s_1, \dots, s_n)U$ is the spectral decomposition of $\frac{1}{q}RR^{\top}$: $\hat{\Sigma} = U^{\top} \operatorname{diag}(\max(\underline{\sigma}, \sqrt{s_1}), \dots, \max(\underline{\sigma}, \sqrt{s_n}))U$

Main drawbacks

- Statistically: $\mathcal{O}(n^2)$ parameters to infer for Σ , with only nq observations (ok for q large w.r.t. n)
- Computationally: Σ update cost is $\mathcal{O}(n^3)$ too slow in general (SVD computation) Note: OK for MEG/EEG problems ($n \approx 300$)

Table of Contents

Calibrating λ and noise level estimation

Multi-task case and noise structure

Block homoscedastic model

Experiments

Block Homoscedastic model

In the MEG/EEG case : 3 different types of signals are recorded

- electrodes : measure the electric potentials
- magnetometers : measure the magnetic field
- gradiometers : measure the gradient of the magnetic field
- \neq physical natures \Longrightarrow different noise levels

Key point: observations divided into 3 blocks (known partition)

Block Homoscedastic model

K groups of observations (K sensors modalities)

$$X = \begin{pmatrix} X^1 \\ \vdots \\ X^K \end{pmatrix}, Y = \begin{pmatrix} Y^1 \\ \vdots \\ Y^K \end{pmatrix}, E = \begin{pmatrix} E^1 \\ \vdots \\ E^K \end{pmatrix}$$

 $\Sigma^* = \operatorname{diag}(\sigma_1^* \operatorname{Id}_{n_1}, \dots, \sigma_K^* \operatorname{Id}_{n_K})$ where $n = n_1 + \dots + n_K$

For each block, the entries $E_{i,j}^k \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$ (homoscedastic): $\boxed{Y^k = X^k \mathbf{B}^* + \sigma_k^* E^k}$

MEG/EEG case: K = 3 corresponding to 3 physical signals 1) EEG, 2) MEG magnetometers, 3) MEG gradiometers

Smoothed Block Homoscedastic Concomitant (SBHCL)

<u>Additional constraints</u>: Σ piecewise constant **diagonal**, *i.e.*,

$$\Sigma = \operatorname{diag}(\sigma_1 \operatorname{Id}_{n_1}, \ldots, \sigma_K \operatorname{Id}_{n_K})$$

Block Homoscedastic Concomitant:

$$\underset{\substack{\mathrm{B}\in\mathbb{R}^{p\times q},\\\sigma_{1},...,\sigma_{K}\in\mathbb{R}_{++}^{K}\\\sigma_{k}\geq \underline{\sigma}_{k},\forall k\in[K]}}{\operatorname{arg\,min}}\sum_{k=1}^{K} \left(\frac{\|Y^{k}-X^{k}\mathrm{B}\|^{2}}{2nq\sigma_{k}}+\frac{n_{k}\sigma_{k}}{2n}\right)+\lambda \,\|\mathrm{B}\|_{2,1}$$

<u>Benefit</u>: number of parameters reduced $\frac{n(n+1)}{2} \rightarrow K$

Solving the SBHCL

- B update: (approximately) solve a Multi-Task Lasso problem e.g., by Block Coordinate Descent (BCD) over rows, etc.
- Σ update: simply update the σ_k 's, potentially at each row B_j update (cheap : residuals are stored!)

Table of Contents

Calibrating λ and noise level estimation

Multi-task case and noise structure

Block homoscedastic model

Experiments

Simulated scenario

Simulated block homoscedastic design:

▶ n = 300, with equals block sizes $n_1 = n_2 = n_3 = 100$

▶
$$p = 1000$$

- ▶ q = 100
- ► X Toeplitz-correlated: $Cov(X_i, X_j) = \rho^{|i-j|}, \rho \in]0, 1[$
- ▶ 3 blocks with standard deviation in ratio 1, 2, 5

Rem: Block 1 has smallest standard deviation

Support recovery: ROC curve w.r.t. λ , $\rho = 0.1$

SBHCL:

MTL:

SCL:

Smoothed Block Homoscedastic Concomitant Multi-Task Lasso Smooth Concomitant Lasso (single σ for all blocks)

JCL.

MTL (Block 1): MTL on least noisy block

SCL (Block 1): SCL on least noisy block

Support recovery: ROC curve w.r.t. λ , $\rho=0.9$

SBHCL:

MTL:

SCL:

Multi-Task Lasso Smooth Concomitant Lasso (single σ for all blocks)

Smoothed Block Homoscedastic Concomitant

- MTL (Block 1): MTL on least noisy block
- SCL (Block 1): SCL on least noisy block

Prediction error: RMSE curve w.r.t. λ , $\rho = 0.7$

RMSE (Root Mean Square Error) normalized by oracle RMSE, per block, for the multi-task SBHCL and SCL on testing set

<u>Conclusion</u>: align best λ 's for all modalities

▶ New insights for handling (structured) noise in multi-task

Cost equivalent to Multi-Task Lasso for "simple" noise structure (*e.g.*, block homoscedastic)

- ▶ New insights for handling (structured) noise in multi-task
- Cost equivalent to Multi-Task Lasso for "simple" noise structure (*e.g.*, block homoscedastic)
- Handling multiple noise levels: helps both for prediction and support identification

- ▶ New insights for handling (structured) noise in multi-task
- Cost equivalent to Multi-Task Lasso for "simple" noise structure (*e.g.*, block homoscedastic)
- Handling multiple noise levels: helps both for prediction and support identification
- Future work: non-convex penalties, repetitive neuro task, etc.

- New insights for handling (structured) noise in multi-task
- Cost equivalent to Multi-Task Lasso for "simple" noise structure (*e.g.*, block homoscedastic)
- Handling multiple noise levels: helps both for prediction and support identification
- ▶ Future work: non-convex penalties, repetitive neuro task, etc.

Merci!

"All models are wrong but some come with good open source implementation and good documentation so use those." A. Gramfort

- ▶ Paper online: arXiv, personnal webpages, AISTATS⁽¹⁹⁾
- Python code online: https://github.com/mathurinm/SHCL

⁽¹⁹⁾ M. Massias et al. "Generalized Concomitant Multi-Task Lasso for Sparse Multimodal Regression". In: AISTATS. vol. 84. 2018, pp. 998–1007.

References I

- Beck, A. and M. Teboulle. "Smoothing and first order methods: A unified framework". In: SIAM J. Optim. 22.2 (2012), pp. 557–580.
- Belloni, A., V. Chernozhukov, and L. Wang. "Square-root Lasso: pivotal recovery of sparse signals via conic programming". In: *Biometrika* 98.4 (2011), pp. 791–806.
- Bertsimas, D., A. King, and R. Mazumder. "Best subset selection via a modern optimization lens". In: Ann. Statist. 44.2 (2016), pp. 813–852.
- Bickel, P. J., Y. Ritov, and A. B. Tsybakov. "Simultaneous analysis of Lasso and Dantzig selector". In: Ann. Statist. 37.4 (2009), pp. 1705–1732.
- Candès, E. J., M. B. Wakin, and S. P. Boyd. "Enhancing Sparsity by Reweighted l₁ Minimization". In: *J. Fourier Anal. Applicat.* 14.5-6 (2008), pp. 877–905.

References II

- Chen, S. S., D. L. Donoho, and M. A. Saunders. "Atomic decomposition by basis pursuit". In: SIAM J. Sci. Comput. 20.1 (1998), pp. 33–61.
- Dalalyan, A. S., M. Hebiri, and J. Lederer. "On the Prediction Performance of the Lasso". In: *Bernoulli* 23.1 (2017), pp. 552–581.
- Donoho, D. L. and I. M. Johnstone. "Adapting to unknown smoothness via wavelet shrinkage". In: J. Amer. Statist. Assoc. 90.432 (1995), pp. 1200–1224.
- El Ghaoui, L., V. Viallon, and T. Rabbani. "Safe feature elimination in sparse supervised learning". In: *J. Pacific Optim.* 8.4 (2012), pp. 667–698.
- Huber, P. J. Robust Statistics. John Wiley & Sons Inc., 1981.
- Johnson, T. B. and C. Guestrin. "BLITZ: A Principled Meta-Algorithm for Scaling Sparse Optimization". In: ICML. 2015, pp. 1171–1179.

References III

- Massias, M. et al. "Generalized Concomitant Multi-Task Lasso for Sparse Multimodal Regression". In: *AISTATS*. Vol. 84. 2018, pp. 998–1007.
- Natarajan, B. K. "Sparse approximate solutions to linear systems". In: SIAM J. Comput. 24.2 (1995), pp. 227–234.
- Ndiaye, E. et al. "Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression". In: NCMIP. 2017.
- Ndiaye, E. et al. "Gap Safe screening rules for sparsity enforcing penalties". In: J. Mach. Learn. Res. 18.128 (2017), pp. 1–33.
- Nesterov, Y. "Smooth minimization of non-smooth functions". In: Math. Program. 103.1 (2005), pp. 127–152.
- Obozinski, G., B. Taskar, and M. I. Jordan. "Joint covariate selection and joint subspace selection for multiple classification problems". In: *Statistics and Computing* 20.2 (2010), pp. 231–252.

References IV

- Owen, A. B. "A robust hybrid of lasso and ridge regression". In: Contemporary Mathematics 443 (2007), pp. 59–72.
- Sun, T. and C.-H. Zhang. "Scaled sparse linear regression". In: Biometrika 99.4 (2012), pp. 879–898.
- Tibshirani, R. "Regression Shrinkage and Selection via the Lasso". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 58.1 (1996), pp. 267–288.
- Tibshirani, R. et al. "Strong rules for discarding predictors in lasso-type problems". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 74.2 (2012), pp. 245–266.