This is a grade course on robust statistics and optimization.
WARNING: Useful code (for plotting) for the entire notebooks in this course utils.py
Syllabus:
Cours:
-
Introduction: IntroRobustness.pdf; IntroRobustness.ipynb, LeveragePoints.ipynb, LeveragePoints.html
-
Equivariance / Breakdown Point: Equivariance_BP.pdf
-
Depth / High Breakdown points: Depth.pdf
-
Location and scale : LocationScale.pdf, Huber_display.ipynb, Huber_display.html
-
L-estimates and influence functions : L-Estimates.pdf
-
Gradient descent : GradientDescent.pdf, Gradient_descent.ipynb, Gradient_descent.html
-
Majorization Minimization : MajorizationMinimization.pdf; MajorizationMinimization.ipynb, MajorizationMinimization.html
-
Conjugacy : Conjugacy.pdf Conjugate.ipynb, Conjugate.html
-
Smoothing : Smoothing.pdf Smoothing.ipynb, Smoothing.html
-
Linear Models :LinearModels.pdf
-
Quantile regression : QuantileRegression.pdf, QuantileRegression.ipynb, QuantileRegression.html
-
Robust Optimization : RobustOptim.pdf
-
Conclusion : Conclusion.pdf