STAT 593 Robust statistics: Location and Scale

Joseph Salmon

http://josephsalmon.eu

Télécom Paristech, Institut Mines-Télécom & University of Washington, Department of Statistics (Visiting Assistant Professor)

Outline

Location

Scale/dispersion

Simultaneous location and scale estimation

Asymptotic / minimax result

Table of Contents

Location

Contamination model

M-estimators of location Asymptotic normality of M-estimators

Scale/dispersion

Dispersion model
M-estimators of scale

Simultaneous location and scale estimation

Simultaneous location and dispersion model Simultaneous M-estimators

Asymptotic / minimax result

Settings
How the Huber loss was discovere

Simplest location model¹

$$x_i = \mu^* + \varepsilon_i$$
, for $i = 1, \dots, n$ (1)

- $\mu^* \in \mathbb{R}^p$ is the true parameter
- $ightharpoonup x_1, \ldots, x_n$ are n observations in \mathbb{R}^p ; and $X = [x_1, \ldots, x_n]$
- $\triangleright \varepsilon_1, \dots, \varepsilon_n$ model the noise variables (also in \mathbb{R}^p) and are *i.i.d.* random variable having the same c.d.f. F

Consequence: x_1, \ldots, x_n are i.i.d. with c.d.f. $G(\cdot) = F(\cdot - \mu^*)$

Rem: when F has a density, we write it f

¹R. A. Maronna, R. D. Martin, and V. J. Yohai. *Robust statistics: Theory and methods.* Chichester: John Wiley & Sons, 2006.

Contamination/mixture model

Imagine a proportion of $1-\alpha$ of the observations generated by a "normal" model, and a proportion α generated from an unknown c.d.f:

$$(1-\alpha)F + \alpha G$$

- ▶ F : models the "normal" observation, e.g., F is the c.d.f. of a Gaussian distribution $\mathcal{N}(\mu^*, \sigma^2_* \operatorname{Id}_p)$
- ightharpoonup G: an arbitrary distribution (for instance a Gaussian with a way larger variance)
- $ightharpoonup \alpha$: contamination ratio/parameter

Rem: similarly, when the distributions F and G have densities f and g, the mixture density is $(1 - \alpha)f + \alpha g$

Table of Contents

Location

Contamination model

M-estimators of location

Asymptotic normality of M-estimators

Scale/dispersion

Dispersion model

M-estimators of scale

Simultaneous location and scale estimation

Simultaneous location and dispersion model Simultaneous M-estimators

Asymptotic / minimax result

Settings

How the Huber loss was discovered

Maximum Likelihood Estimation (MLE)

Assuming model (1) such that f is the density (or p.d.f.) of F, the likelihood function is:

$$\mathcal{L}(x_1,\ldots,x_n;\mu) = \prod_{i=1}^n f(x_i - \mu)$$

The Maximum Likelihood Estimation (MLE) of μ is defined by:

$$\hat{\mu}_n^{\text{MLE}} \in \operatorname*{arg\,max}_{\mu \in \mathbb{R}^p} \mathcal{L}(x_1, \dots, x_n; \mu)$$

Rem: if F is known exactly, the MLE is "optimal" in the sense of asymptotic normality, see Section (10.8), Maronna et al. (2006).

<u>Double objective</u>: find estimators almost optimal when the model is not contaminated, but also almost optimal when it is.

More on MLE

Instead of maximizing a product of function, (convex) optimization would reformulated this equivalently as minimizing the (negative) log-likelihood:

$$\hat{\mu}_n^{\text{MLE}} \in \operatorname*{arg\,min}_{\mu \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \rho(x_i - \mu), \text{ where } \rho = -\log(f)$$

Rem: possibly additive / multiplicative constants can be removed

<u>Differentiable case</u>: If ρ is differentiable, then first order conditions (or Fermat's rule) ensure that:

$$0 = \frac{1}{n} \sum_{i=1}^{n} \psi(x_i - \hat{\mu}_n)$$
, where $\psi = \rho'$.

Examples (p=1)

Distribution	f(x)	$\rho(x)$	$\psi(x)$	$\hat{\mu}_n$
Gaussian	$\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x^2}{2}\right)$	$\frac{x^2}{2}$	x	\bar{x}_n
Laplace	$\frac{1}{2}\exp(- x)$		×	$\operatorname{Med}_n(X)$

M-estimators for location parameter

Definition ___

We call M-estimator associated to a function ρ any estimator obtained as follows:

$$\hat{\mu}_n(\rho) \in \operatorname*{arg\,min}_{\mu \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \rho(x_i - \mu), \text{ where } \rho \text{ is not necessarily } -\log(f)$$

<u>Differentiable case</u>: If ρ is differentiable, then first order conditions (or Fermat's rule)

$$0 = \sum_{i=1}^n \psi(x_i - \hat{\mu}_n)$$
, where $\psi = \rho'$.

"Pinball loss" / quantile regression

$$\begin{split} \rho &= \ell_\alpha \text{ where } \ell_\alpha(x) = \begin{cases} -(1-\alpha)x & \text{if } x \leq 0 \\ \alpha x & \text{if } x \geq 0 \end{cases} \\ &= \alpha |x| \mathbbm{1}_{\{x \geq 0\}} + (1-\alpha)|x| \mathbbm{1}_{\{x \leq 0\}} \end{split}$$

<u>Rem</u>: we will discuss some more the case of non-differentiable but convex functions, sub-differentials, etc.

"Pinball loss" / quantile regression

$$\begin{split} \rho &= \ell_\alpha \text{ where } \ell_\alpha(x) = \begin{cases} -(1-\alpha)x & \text{if } x \leq 0 \\ \alpha x & \text{if } x \geq 0 \end{cases} \\ &= \alpha |x| \mathbbm{1}_{\{x \geq 0\}} + (1-\alpha)|x| \mathbbm{1}_{\{x \leq 0\}} \end{split}$$

<u>Rem</u>: we will discuss some more the case of non-differentiable but convex functions, sub-differentials, etc.

"Pinball loss" / quantile regression

$$\begin{split} \rho &= \ell_\alpha \text{ where } \ell_\alpha(x) = \begin{cases} -(1-\alpha)x & \text{if } x \leq 0 \\ \alpha x & \text{if } x \geq 0 \end{cases} \\ &= \alpha |x| \mathbbm{1}_{\{x \geq 0\}} + (1-\alpha)|x| \mathbbm{1}_{\{x \leq 0\}} \end{split}$$

<u>Rem</u>: we will discuss some more the case of non-differentiable but convex functions, sub-differentials, etc.

Distribution of M-estimators

Define $\breve{\mu} \in \mathbb{R}^p$ as the theoretical counter part of the M-estimators: for $X \sim F$, it is defined by

$$\begin{split} \breve{\mu} &:= \breve{\mu}(F,\rho) \in \mathop{\arg\min}_{\mu \in \mathbb{R}^p} \mathbb{E}_F \big(\rho(X-\mu) \big) \\ \text{whereas} \quad \hat{\mu}_n &:= \hat{\mu}_n(\rho) \in \mathop{\arg\min}_{\mu \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \rho(x_i - \mu) \end{split}$$

Rem:

- $\hat{\mu}_n(\rho) = \breve{\mu}(\hat{F}_n, \rho)$ where \hat{F}_n is the empirical distribution based on the sample x_1, \ldots, x_n .
- ▶ In the MLE case : $\hat{\mu}_n^{\mathrm{MLE}} = \breve{\mu}(\hat{F}_n, -\log(f))$ where f is the p.d.f.
- ightharpoonup and $\hat{\mu}_n$ are translation equivariant

Example in 1D

- when $ho(x)=rac{x^2}{2}$ then $reve{\mu}(F,
 ho)=\mathbb{E}_F(X)$
- when $\rho(x)=|x|$ then $\widecheck{\mu}(F,\rho)=\mathrm{Med}_F(X)$ where $M=\mathrm{Med}_F(X)$ satisfies $F(M)=\frac{1}{2}$
- when $\rho(x) = \ell_{\alpha}(x) := \alpha |x| \mathbb{1}_{\{x \geq 0\}} + (1-\alpha) |x| \mathbb{1}_{\{x \leq 0\}}$ then $\check{\mu}(F,\rho) = F^{-1}(\alpha) = \inf\{x \in \mathbb{R} : F(x) \geq \alpha\}$ is the α -quantile of the distribution F.

Goal: find
$$\check{\mu} \in \arg\min_{\mu \in \mathbb{P}} \mathbb{E}_F (\ell_{\alpha}(X - \mu))$$

$$\mathbb{E}_{F}(\ell_{\alpha}(X-\mu)) = \mathbb{E}_{F}(\alpha|X-\mu|\mathbb{1}_{\{X \ge \mu\}} + (1-\alpha)|X-\mu|\mathbb{1}_{\{X \le \mu\}})$$
$$= \alpha \int_{\mu}^{+\infty} (x-\mu)f(x)dx - (1-\alpha) \int_{-\infty}^{\mu} (x-\mu)f(x)dx$$

Goal: find
$$\breve{\mu} \in \arg\min_{\mu \in \mathbb{R}} \mathbb{E}_F (\ell_{\alpha}(X - \mu))$$

$$\mathbb{E}_{F}(\ell_{\alpha}(X-\mu)) = \mathbb{E}_{F}(\alpha|X-\mu|\mathbb{1}_{\{X \ge \mu\}} + (1-\alpha)|X-\mu|\mathbb{1}_{\{X \le \mu\}})$$
$$= \alpha \int_{\mu}^{+\infty} (x-\mu)f(x)dx - (1-\alpha) \int_{-\infty}^{\mu} (x-\mu)f(x)dx$$

Note that
$$\int_{\mu}^{+\infty}(x-\mu)f(x)dx=\int_{\mu}^{+\infty}xf(x)dx-\mu(1-F(\mu))$$
, so

Goal: find
$$\check{\mu} \in \arg\min_{\mu \in \mathbb{R}} \mathbb{E}_F (\ell_{\alpha}(X - \mu))$$

$$\mathbb{E}_{F}(\ell_{\alpha}(X-\mu)) = \mathbb{E}_{F}(\alpha|X-\mu|\mathbb{1}_{\{X \ge \mu\}} + (1-\alpha)|X-\mu|\mathbb{1}_{\{X \le \mu\}})$$
$$= \alpha \int_{\mu}^{+\infty} (x-\mu)f(x)dx - (1-\alpha) \int_{-\infty}^{\mu} (x-\mu)f(x)dx$$

Note that
$$\int_{\mu}^{+\infty} (x-\mu)f(x)dx = \int_{\mu}^{+\infty} xf(x)dx - \mu(1-F(\mu))$$
, so

$$\frac{d}{d\mu} \left(\int_{\mu}^{+\infty} (x - \mu) f(x) dx \right) = \lim_{x \to +\infty} x f(x) - \mu f(\mu) - (1 - F(\mu)) + \mu f(\mu)$$
$$= -(1 - F(\mu))$$

Goal: find
$$\breve{\mu} \in \operatorname*{arg\,min}_{\mu \in \mathbb{R}} \mathbb{E}_F \big(\ell_{\alpha}(X - \mu) \big)$$

$$\mathbb{E}_{F}(\ell_{\alpha}(X-\mu)) = \mathbb{E}_{F}(\alpha|X-\mu|\mathbb{1}_{\{X \ge \mu\}} + (1-\alpha)|X-\mu|\mathbb{1}_{\{X \le \mu\}})$$
$$= \alpha \int_{\mu}^{+\infty} (x-\mu)f(x)dx - (1-\alpha) \int_{-\infty}^{\mu} (x-\mu)f(x)dx$$

Note that
$$\int_{\mu}^{+\infty} (x-\mu)f(x)dx = \int_{\mu}^{+\infty} xf(x)dx - \mu(1-F(\mu))$$
, so

$$\frac{d}{d\mu} \left(\int_{\mu}^{+\infty} (x - \mu) f(x) dx \right) = \lim_{x \to +\infty} x f(x) - \mu f(\mu) - (1 - F(\mu)) + \mu f(\mu)$$
$$= -(1 - F(\mu))$$

Similarly, $\frac{d}{d\mu}\left(\int_{-\infty}^{\mu}(x-\mu)f(x)dx\right)=F(\mu)$ so the first order conditions of the associated minimization problem yield

Goal: find
$$\breve{\mu} \in \arg\min_{\mu \in \mathbb{R}} \mathbb{E}_F (\ell_{\alpha}(X - \mu))$$

$$\mathbb{E}_{F}(\ell_{\alpha}(X-\mu)) = \mathbb{E}_{F}(\alpha|X-\mu|\mathbb{1}_{\{X \ge \mu\}} + (1-\alpha)|X-\mu|\mathbb{1}_{\{X \le \mu\}})$$
$$= \alpha \int_{\mu}^{+\infty} (x-\mu)f(x)dx - (1-\alpha) \int_{-\infty}^{\mu} (x-\mu)f(x)dx$$

Note that $\int_{\mu}^{+\infty} (x-\mu)f(x)dx = \int_{\mu}^{+\infty} xf(x)dx - \mu(1-F(\mu))$, so

$$\frac{d}{d\mu} \left(\int_{\mu}^{+\infty} (x - \mu) f(x) dx \right) = \lim_{x \to +\infty} x f(x) - \mu f(\mu) - (1 - F(\mu)) + \mu f(\mu)$$
$$= -(1 - F(\mu))$$

Similarly, $\frac{d}{d\mu} \left(\int_{-\infty}^{\mu} (x - \mu) f(x) dx \right) = F(\mu)$ so the first order conditions of the associated minimization problem yield

$$0 = -\alpha(1 - F(\breve{\mu})) + (1 - \alpha)F(\breve{\mu})$$

Goal: find
$$\breve{\mu} \in \arg\min_{\mu \in \mathbb{R}} \mathbb{E}_F (\ell_{\alpha}(X - \mu))$$

$$\mathbb{E}_{F}(\ell_{\alpha}(X-\mu)) = \mathbb{E}_{F}(\alpha|X-\mu|\mathbb{1}_{\{X \ge \mu\}} + (1-\alpha)|X-\mu|\mathbb{1}_{\{X \le \mu\}})$$
$$= \alpha \int_{\mu}^{+\infty} (x-\mu)f(x)dx - (1-\alpha) \int_{-\infty}^{\mu} (x-\mu)f(x)dx$$

Note that $\int_{\mu}^{+\infty}(x-\mu)f(x)dx=\int_{\mu}^{+\infty}xf(x)dx-\mu(1-F(\mu))$, so

$$\frac{d}{d\mu} \left(\int_{\mu}^{+\infty} (x - \mu) f(x) dx \right) = \lim_{x \to +\infty} x f(x) - \mu f(\mu) - (1 - F(\mu)) + \mu f(\mu)$$
$$= -(1 - F(\mu))$$

Similarly, $\frac{d}{d\mu}\left(\int_{-\infty}^{\mu}(x-\mu)f(x)dx\right)=F(\mu)$ so the first order conditions of the associated minimization problem yield

$$0 = -\alpha(1 - F(\check{\mu})) + (1 - \alpha)F(\check{\mu}) \iff \alpha = F(\check{\mu})$$

Goal: find
$$\check{\mu} \in \arg\min_{\mu \in \mathbb{R}} \mathbb{E}_F (\ell_{\alpha}(X - \mu))$$

$$\mathbb{E}_{F}(\ell_{\alpha}(X-\mu)) = \mathbb{E}_{F}(\alpha|X-\mu|\mathbb{1}_{\{X \ge \mu\}} + (1-\alpha)|X-\mu|\mathbb{1}_{\{X \le \mu\}})$$
$$= \alpha \int_{\mu}^{+\infty} (x-\mu)f(x)dx - (1-\alpha) \int_{-\infty}^{\mu} (x-\mu)f(x)dx$$

Note that $\int_{\mu}^{+\infty}(x-\mu)f(x)dx=\int_{\mu}^{+\infty}xf(x)dx-\mu(1-F(\mu))$, so

$$\frac{d}{d\mu} \left(\int_{\mu}^{+\infty} (x - \mu) f(x) dx \right) = \lim_{x \to +\infty} x f(x) - \mu f(\mu) - (1 - F(\mu)) + \mu f(\mu)$$
$$= -(1 - F(\mu))$$

Similarly, $\frac{d}{d\mu}\left(\int_{-\infty}^{\mu}(x-\mu)f(x)dx\right)=F(\mu)$ so the first order conditions of the associated minimization problem yield

$$0 = -\alpha(1 - F(\breve{\mu})) + (1 - \alpha)F(\breve{\mu}) \iff \alpha = F(\breve{\mu}) \iff \breve{\mu} = F^{-1}(\alpha)$$

$$\rho_{\alpha} := \begin{cases} \frac{x^2}{2\alpha} & \text{if } |x| \leq \alpha \\ |x| - \frac{\alpha}{2} & \text{if } |x| > \alpha \end{cases}$$

$$\psi_{\alpha} : \begin{cases} \frac{x}{\alpha} & \text{if } |x| \leq \alpha \\ \operatorname{sign}(x) & \text{if } |x| > \alpha \end{cases}$$

$$\rho_{\alpha} := \begin{cases} \frac{x^2}{2\alpha} & \text{if } |x| \leq \alpha \\ |x| - \frac{\alpha}{2} & \text{if } |x| > \alpha \end{cases}$$

$$\psi_{\alpha} : \begin{cases} \frac{x}{\alpha} & \text{if } |x| \leq \alpha \\ \operatorname{sign}(x) & \text{if } |x| > \alpha \end{cases}$$

$$\rho_{\alpha} := \begin{cases} \frac{x^2}{2\alpha} & \text{if } |x| \le \alpha \\ |x| - \frac{\alpha}{2} & \text{if } |x| > \alpha \end{cases}$$

$$\psi_{\alpha} : \begin{cases} \frac{x}{\alpha} & \text{if } |x| \leq \alpha \\ \operatorname{sign}(x) & \text{if } |x| > \alpha \end{cases}$$

$$\rho_{\alpha} := \begin{cases} \frac{x^2}{2\alpha} & \text{if } |x| \le \alpha \\ |x| - \frac{\alpha}{2} & \text{if } |x| > \alpha \end{cases}$$

$$\psi_{\alpha}: \begin{cases} \frac{x}{\alpha} & \text{if } |x| \leq \alpha\\ \operatorname{sign}(x) & \text{if } |x| > \alpha \end{cases}$$

$$\rho_\alpha: \begin{cases} 1-[1-(\frac{x}{\alpha})^2]^3 & \text{if } |x| \leq \alpha \\ 1 & \text{if } |x| > \alpha \end{cases}$$

$$\rho_{\alpha}$$
, $\alpha = 3.5$

1.5

1.0

0.5

-0.5

0

2

-1.0

$$\psi_{\alpha}: \begin{cases} \frac{6x}{\alpha^2} [1 - (\frac{x}{\alpha})^2]^2 & \text{if } |x| \leq \alpha \\ 0 & \text{if } |x| > \alpha \end{cases}$$

$$\rho_\alpha: \begin{cases} 1-[1-(\frac{x}{\alpha})^2]^3 & \text{if } |x| \leq \alpha \\ 1 & \text{if } |x| > \alpha \end{cases}$$

$$\rho_{\alpha}$$
, $\alpha = 2.5$

1.5

1.0

0.5

-0.5

-1.0

-4

-2

0

2

4

$$\psi_{\alpha}: \begin{cases} \frac{6x}{\alpha^2} [1 - (\frac{x}{\alpha})^2]^2 & \text{if } |x| \leq \alpha \\ 0 & \text{if } |x| > \alpha \end{cases}$$

$$\rho_\alpha: \begin{cases} 1-[1-(\frac{x}{\alpha})^2]^3 & \text{if } |x| \leq \alpha \\ 1 & \text{if } |x| > \alpha \end{cases}$$

$$\psi_{\alpha}: \begin{cases} \frac{6x}{\alpha^2} [1 - (\frac{x}{\alpha})^2]^2 & \text{if } |x| \leq \alpha \\ 0 & \text{if } |x| > \alpha \end{cases}$$

$$\rho_\alpha: \begin{cases} 1-[1-(\frac{x}{\alpha})^2]^3 & \text{if } |x| \leq \alpha \\ 1 & \text{if } |x| > \alpha \end{cases}$$

$$\psi_{\alpha}: \begin{cases} \frac{6x}{\alpha^2} [1 - (\frac{x}{\alpha})^2]^2 & \text{if } |x| \leq \alpha \\ 0 & \text{if } |x| > \alpha \end{cases}$$

Table of Contents

Location

Contamination model M-estimators of location

Asymptotic normality of M-estimators

Scale/dispersion

Dispersion model
M-estimators of scale

Simultaneous location and scale estimation

Simultaneous location and dispersion model Simultaneous M-estimators

Asymptotic / minimax result

Settings

How the Huber loss was discovered

For this section, we consider only the case where ρ is differentiable where $\psi = \rho'$, and ψ'' is bounded. Assume also $X \sim F$, and x_1, \ldots, x_n are *i.i.d.* with the same distribution F.

For this section, we consider only the case where ρ is differentiable where $\psi = \rho'$, and ψ'' is bounded. Assume also $X \sim F$, and x_1, \ldots, x_n are *i.i.d.* with the same distribution F.

Theorem

Under the previous smoothness assumption and provided ψ is non-decreasing

$$\sqrt{n}(\hat{\mu}_n - \breve{\mu}) \rightarrow_d \mathcal{N}(0, V^2), \text{ where } V^2 = \frac{\mathbb{E}_F \left(\psi(X - \breve{\mu})^2\right)}{\left(\mathbb{E}_F \psi'(X - \breve{\mu})\right)^2}$$

is called the asymptotic variance of $\hat{\mu}_n$

For this section, we consider only the case where ρ is differentiable where $\psi = \rho'$, and ψ'' is bounded. Assume also $X \sim F$, and x_1, \ldots, x_n are *i.i.d.* with the same distribution F.

Theorem

Under the previous smoothness assumption and provided ψ is non-decreasing

$$\sqrt{n}(\hat{\mu}_n - \breve{\mu}) \rightarrow_d \mathcal{N}(0, V^2), \text{ where } V^2 = \frac{\mathbb{E}_F \left(\psi(X - \breve{\mu})^2\right)}{\left(\mathbb{E}_F \psi'(X - \breve{\mu})\right)^2}$$

is called the **asymptotic variance** of $\hat{\mu}_n$

Example : In the case $\rho(x)=x^2/2$, one recovers the CLT as $\overline{V^2=\mathrm{Var}(X)}$

For this section, we consider only the case where ρ is differentiable where $\psi = \rho'$, and ψ'' is bounded. Assume also $X \sim F$, and x_1, \ldots, x_n are *i.i.d.* with the same distribution F.

Theorem

Under the previous smoothness assumption and provided ψ is non-decreasing

$$\sqrt{n}(\hat{\mu}_n - \breve{\mu}) \rightarrow_d \mathcal{N}(0, V^2), \text{ where } V^2 = \frac{\mathbb{E}_F \left(\psi(X - \breve{\mu})^2\right)}{\left(\mathbb{E}_F \psi'(X - \breve{\mu})\right)^2}$$

is called the asymptotic variance of $\hat{\mu}_n$

 $\underline{ {\rm Example}}$: In the case $\rho(x)=x^2/2,$ one recovers the CLT as $\overline{V^2={\rm Var}(X)}$

Rem: since $\breve{\mu}$ is translation equivariant, in the translation model $x_i=\mu^*+\varepsilon_i$ then $V^2=$ is independent of μ^*

Proof continued

By definition of $\check{\mu}$ and $\hat{\mu}_n$

$$\mathbb{E}_F \psi(X - \check{\mu}) = 0$$
 and $\frac{1}{n} \sum_{i=1}^n \psi(x_i - \hat{\mu}_n) = 0$

By definition of $\check{\mu}$ and $\hat{\mu}_n$

$$\mathbb{E}_F \psi(X - \breve{\mu}) = 0$$
 and $\frac{1}{n} \sum_{i=1}^n \psi(x_i - \hat{\mu}_n) = 0$

Then the function $\check{\lambda}$ and $\hat{\lambda}_n$ defined for any $s \in \mathbb{R}$

$$\label{eq:lambda} \check{\lambda}(s) = \mathbb{E}_F \psi(X-s) \quad \text{ and } \quad \hat{\lambda}_n(s) = \frac{1}{n} \sum_{i=1}^n \psi(x_i-s)$$
 are non-increasing, $\check{\lambda}(\check{\mu}) = \hat{\lambda}_n(\hat{\mu}_n) = 0$ and $\lim_{n \to \infty} \hat{\lambda}_n(s) = \check{\lambda}(s)$.

By definition of $reve{\mu}$ and $\hat{\mu}_n$

$$\mathbb{E}_F \psi(X - \breve{\mu}) = 0 \quad \text{and} \quad \frac{1}{n} \sum_{i=1}^n \psi(x_i - \hat{\mu}_n) = 0$$

Then the function $\check{\lambda}$ and $\hat{\lambda}_n$ defined for any $s \in \mathbb{R}$

$$\check{\lambda}(s) = \mathbb{E}_F \psi(X - s)$$
 and $\hat{\lambda}_n(s) = \frac{1}{n} \sum_{i=1}^n \psi(x_i - s)$

are non-increasing, $\breve{\lambda}(\breve{\mu}) = \hat{\lambda}_n(\hat{\mu}_n) = 0$ and $\lim_{n \to \infty} \hat{\lambda}_n(s) = \breve{\lambda}(s)$.

Fact 1:
$$\hat{\mu}_n \stackrel{p}{\to} \breve{\mu}$$

By definition of $reve{\mu}$ and $\hat{\mu}_n$

$$\mathbb{E}_F \psi(X - \breve{\mu}) = 0 \quad \text{ and } \quad \frac{1}{n} \sum_{i=1}^n \psi(x_i - \hat{\mu}_n) = 0$$

Then the function $\check{\lambda}$ and $\hat{\lambda}_n$ defined for any $s \in \mathbb{R}$

$$reve{\lambda}(s) = \mathbb{E}_F \psi(X-s)$$
 and $\hat{\lambda}_n(s) = \frac{1}{n} \sum_{i=1}^n \psi(x_i-s)$

are non-increasing, $\check{\lambda}(\check{\mu})=\hat{\lambda}_n(\hat{\mu}_n)=0$ and $\lim_{n\to\infty}\hat{\lambda}_n(s)=\check{\lambda}(s)$.

Fact 1:
$$\hat{\mu}_n \xrightarrow{p} \breve{\mu}$$

<u>Proof</u>: fix $\epsilon > 0$: since $\hat{\lambda}_n$ is non-increasing $\mathbb{P}(\{\hat{\mu}_n < \breve{\mu} - \epsilon\}) \leq \mathbb{P}(\{\hat{\lambda}_n(\hat{\mu}_n) > \hat{\lambda}_n(\breve{\mu} - \epsilon)\}) = \mathbb{P}(\{0 > \hat{\lambda}_n(\breve{\mu} - \epsilon)\})$

By definition of $\check{\mu}$ and $\hat{\mu}_n$

$$\mathbb{E}_F \psi(X - \check{\mu}) = 0 \quad \text{ and } \quad \frac{1}{n} \sum_{i=1}^n \psi(x_i - \hat{\mu}_n) = 0$$

Then the function $\check{\lambda}$ and $\hat{\lambda}_n$ defined for any $s \in \mathbb{R}$

$$\check{\lambda}(s) = \mathbb{E}_F \psi(X-s)$$
 and $\hat{\lambda}_n(s) = \frac{1}{n} \sum_{i=1}^n \psi(x_i-s)$

are non-increasing, $\check{\lambda}(\check{\mu})=\hat{\lambda}_n(\hat{\mu}_n)=0$ and $\lim_{n\to\infty}\hat{\lambda}_n(s)=\check{\lambda}(s)$.

Fact 1:
$$\hat{\mu}_n \stackrel{p}{\to} \breve{\mu}$$

<u>Proof</u>: fix $\epsilon > 0$: since $\hat{\lambda}_n$ is non-increasing

$$\mathbb{P}(\{\hat{\mu}_n < \widecheck{\mu} - \epsilon\}) \le \mathbb{P}(\{\hat{\lambda}_n(\hat{\mu}_n) > \hat{\lambda}_n(\widecheck{\mu} - \epsilon)\}) = \mathbb{P}(\{0 > \hat{\lambda}_n(\widecheck{\mu} - \epsilon)\})$$

Now remind that with the law of large number:

$$\lim_{n\to\infty}\hat{\lambda}_n(\breve{\mu}-\epsilon)=\breve{\lambda}(\breve{\mu}-\epsilon)>0, \text{ so } \lim_{n\to\infty}\mathbb{P}(\{0>\hat{\lambda}_n(\breve{\mu}-\epsilon)\})=0.$$

Hence, $\lim_{n\to\infty}\mathbb{P}(\{\hat{\mu}_n<\breve{\mu}-\epsilon\})=0$ and similarly one can show that

$$\lim_{n \to \infty} \mathbb{P}(\{\hat{\mu}_n > \check{\mu} + \epsilon\}) = 0$$

Proof (end)

By a Taylor expansion (Lagrange form) there exists $\tilde{\mu}$ such :

$$\frac{1}{n} \sum_{i=1}^{n} \psi(x_i - \hat{\mu}_n) = \frac{1}{n} \sum_{i=1}^{n} \psi(x_i - \check{\mu}) + (\check{\mu} - \hat{\mu}_n) \cdot \frac{1}{n} \sum_{i=1}^{n} \psi'(x_i - \check{\mu}) + \frac{1}{2n} (\check{\mu} - \hat{\mu}_n)^2 \sum_{i=1}^{n} \psi''(x_i - \check{\mu})$$

Proof (end)

By a Taylor expansion (Lagrange form) there exists $\tilde{\mu}$ such :

$$\frac{1}{n} \sum_{i=1}^{n} \psi(x_i - \hat{\mu}_n) = \frac{1}{n} \sum_{i=1}^{n} \psi(x_i - \check{\mu}) + (\check{\mu} - \hat{\mu}_n) \cdot \frac{1}{n} \sum_{i=1}^{n} \psi'(x_i - \check{\mu}) + \frac{1}{2n} (\check{\mu} - \hat{\mu}_n)^2 \sum_{i=1}^{n} \psi''(x_i - \check{\mu})$$

Hence:

$$\sqrt{n}(\hat{\mu}_n - \breve{\mu}) = -\frac{\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^n \psi(x_i - \breve{\mu})\right)}{\frac{1}{n}\sum_{i=1}^n \psi'(x_i - \breve{\mu}) + (\hat{\mu}_n - \breve{\mu})\frac{1}{2n}\sum_{i=1}^n \psi''(x_i - \breve{\mu})}$$

Proof (end)

By a Taylor expansion (Lagrange form) there exists $\tilde{\mu}$ such :

$$\frac{1}{n} \sum_{i=1}^{n} \psi(x_i - \hat{\mu}_n) = \frac{1}{n} \sum_{i=1}^{n} \psi(x_i - \check{\mu}) + (\check{\mu} - \hat{\mu}_n) \cdot \frac{1}{n} \sum_{i=1}^{n} \psi'(x_i - \check{\mu}) + \frac{1}{2n} (\check{\mu} - \hat{\mu}_n)^2 \sum_{i=1}^{n} \psi''(x_i - \check{\mu})$$

Hence:

$$\sqrt{n}(\hat{\mu}_n - \breve{\mu}) = -\frac{\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^n \psi(x_i - \breve{\mu})\right)}{\frac{1}{n}\sum_{i=1}^n \psi'(x_i - \breve{\mu}) + (\hat{\mu}_n - \breve{\mu})\frac{1}{2n}\sum_{i=1}^n \psi''(x_i - \breve{\mu})}$$

Provided ψ'' is bounded, the numerator converges to $\mathbb{E}_F \psi'(X - \check{\mu})$. Hence, with Slutsky's lemma and the CLT,

$$\sqrt{n}(\hat{\mu}_n - \breve{\mu}) \rightarrow_d \mathcal{N}(0, V^2), \text{ where } V^2 = \frac{\mathbb{E}_F \left(\psi(X - \breve{\mu})^2\right)}{\left(\mathbb{E}_F \psi'(X - \breve{\mu})\right)^2}$$

Intuitive view on M-estimators

Assume for simplicity that $\psi(0)=0$ and that $\psi'(0)$ exists, then one can defined

$$W(x) = \begin{cases} \frac{\psi(x)}{x} & \text{if } x \neq 0\\ \psi'(0) & \text{if } x = 0 \end{cases}$$

and then

then
$$0 = \frac{1}{n} \sum_{i=1}^{n} \psi(x_i - \hat{\mu}_n) \iff 0 = \sum_{i=1}^{n} W(x_i - \hat{\mu}_n)(x_i - \hat{\mu}_n)$$

$$\iff \hat{\mu}_n = \frac{\sum_{i=1}^{n} W(x_i - \hat{\mu}_n)x_i}{\sum_{i'=1}^{n} W(x_{i'} - \hat{\mu}_n)}$$

Interpretation: this is a weighted average with weights (often) decaying when $x_i - \hat{\mu}_n$ is large (i.e., for outlying observations)

▶ Mean case: W(x) = 1 all data points are weighted equally

$$\rho_{\alpha} = \begin{cases} \frac{x^2}{2\alpha} & \text{if } |x| \le \alpha \\ |x| - \frac{\alpha}{2} & \text{if } |x| > \alpha \end{cases}$$

$$W_{\alpha}(x) = \min\left(1, \frac{\alpha}{|x|}\right)$$

$$\rho_{\alpha} = \begin{cases} \frac{x^2}{2\alpha} & \text{if } |x| \le \alpha \\ |x| - \frac{\alpha}{2} & \text{if } |x| > \alpha \end{cases}$$

$$W_{\alpha}(x) = \min\left(1, \frac{\alpha}{|x|}\right)$$

$$\rho_{\alpha} = \begin{cases} \frac{x^2}{2\alpha} & \text{if } |x| \le \alpha \\ |x| - \frac{\alpha}{2} & \text{if } |x| > \alpha \end{cases}$$

$$W_{\alpha}(x) = \min\left(1, \frac{\alpha}{|x|}\right)$$

$$\rho_{\alpha} = \begin{cases} \frac{x^2}{2\alpha} & \text{if } |x| \le \alpha \\ |x| - \frac{\alpha}{2} & \text{if } |x| > \alpha \end{cases}$$

$$W_{\alpha}(x) = \min\left(1, \frac{\alpha}{|x|}\right)$$

$$\rho_{\alpha} = \begin{cases} 1 - \left[1 - \left(\frac{x}{\alpha}\right)^2\right]^3 & \text{if } |x| \le \alpha \\ 1 & \text{if } |x| > \alpha \end{cases}$$

$$\rho_{\alpha}, \alpha = 3.5$$

1.5

1.0

0.5

-0.5

-1.0

-4

-2

0

2

4

$$W_{\alpha}(x) = \left[1 - \frac{x^2}{\alpha^2}\right]^2 \mathbb{1}_{[-\alpha,\alpha]}(x)$$

$$\rho_{\alpha} = \begin{cases} 1 - [1 - (\frac{x}{\alpha})^2]^3 & \text{if } |x| \le \alpha \\ 1 & \text{if } |x| > \alpha \end{cases}$$

$$\rho_{\alpha}$$
, $\alpha = 2.5$

1.5

1.0

0.5

-0.5

-1.0

-4

-2

0

2

4

$$W_{\alpha}(x) = \left[1 - \frac{x^2}{\alpha^2}\right]^2 \mathbb{1}_{[-\alpha,\alpha]}(x)$$

$$\rho_{\alpha} = \begin{cases} 1 - [1 - (\frac{x}{\alpha})^2]^3 & \text{if } |x| \le \alpha \\ 1 & \text{if } |x| > \alpha \end{cases}$$

$$W_{\alpha}(x) = \left[1 - \frac{x^2}{\alpha^2}\right]^2 \mathbb{1}_{[-\alpha,\alpha]}(x)$$

$$\rho_{\alpha} = \begin{cases} 1 - [1 - (\frac{x}{\alpha})^2]^3 & \text{if } |x| \le \alpha \\ 1 & \text{if } |x| > \alpha \end{cases}$$

$$W_{\alpha}(x) = \left[1 - \frac{x^2}{\alpha^2}\right]^2 \mathbb{1}_{[-\alpha,\alpha]}(x)$$

Another interpretation

$$\hat{\mu}_n = \hat{\mu}_n + \frac{1}{n} \sum_{i=1}^n \psi(x_i - \hat{\mu}_n) = \frac{1}{n} \sum_{i=1}^n \zeta(x_i, \hat{\mu}_n)$$

where
$$\zeta(x,\mu) = \mu + \psi(x-\mu)$$

Example : for the Huber case $\zeta(x,\mu) = \mu + \alpha \psi_{\alpha}(x-\mu)$ where

$$\psi_{\alpha}(x) : \begin{cases} \frac{x}{\alpha} & \text{if } |x| \leq \alpha \\ \operatorname{sign}(x) & \text{if } |x| > \alpha \end{cases}$$

so

$$\zeta(x,\mu) := \Pi_{[\mu-\alpha,\mu+\alpha]}(x) = \begin{cases} \mu-\alpha & \text{if } x < \mu-\alpha \\ x & \text{if } \mu-\alpha \leq x \leq \mu+\alpha \\ \mu+\alpha & \text{if } x > \mu+\alpha \end{cases}$$

Rem: this is connected to "Windsorizing"

Let $\hat{\mu}_n(X)$ the M-estimator for the Huber function:

$$\sum_{i=1}^{n} \psi_{\alpha}(x_{i} - \hat{\mu}_{n}(X)) = 0 \text{ where } \psi_{\alpha}(x) : \begin{cases} \frac{x}{\alpha} & \text{if } |x| \leq \alpha \\ \operatorname{sign}(x) & \text{if } |x| > \alpha \end{cases}$$

Let $\hat{\mu}_n(X)$ the M-estimator for the Huber function:

$$\sum_{i=1}^{n} \psi_{\alpha}(x_{i} - \hat{\mu}_{n}(X)) = 0 \text{ where } \psi_{\alpha}(x) : \begin{cases} \frac{x}{\alpha} & \text{if } |x| \leq \alpha \\ \operatorname{sign}(x) & \text{if } |x| > \alpha \end{cases}$$

Then:

$$0 = \sum_{i:|x_i - \hat{\mu}_n(X)| \le \alpha} \alpha(x_i - \hat{\mu}_n(X)) + \sum_{i:x_i > \hat{\mu}_n(X) + \alpha} \alpha + \sum_{i:x_i < \hat{\mu}_n(X) - \alpha} -\alpha$$

Let $\hat{\mu}_n(X)$ the M-estimator for the Huber function:

$$\begin{split} &\sum_{i=1}^n \psi_\alpha(x_i - \hat{\mu}_n(X)) = 0 \text{ where } \psi_\alpha(x) : \begin{cases} \frac{x}{\alpha} & \text{if } |x| \leq \alpha \\ \operatorname{sign}(x) & \text{if } |x| > \alpha \end{cases} \end{split}$$
 Then:
$$&0 = \sum_{i:|x_i - \hat{\mu}_n(X)| \leq \alpha} \alpha(x_i - \hat{\mu}_n(X)) + \sum_{i:x_i > \hat{\mu}_n(X) + \alpha} \alpha + \sum_{i:x_i < \hat{\mu}_n(X) - \alpha} -\alpha \\ &0 = \sum_{i:|x_i - \hat{\mu}_n(X)| \leq \alpha} \alpha(x_i - \hat{\mu}_n(X)) + \sum_{i:x_i > \hat{\mu}_n(X) + \alpha} \alpha + \hat{\mu}_n(X) - \hat{\mu}_n(X) \\ &+ \sum_{i:x_i < \hat{\mu}_n(X) - \alpha} -\alpha - \hat{\mu}_n(X) + \hat{\mu}_n(X) \end{split}$$

Let $\hat{\mu}_n(X)$ the M-estimator for the Huber function:

$$\sum_{i=1}^{n} \psi_{\alpha}(x_{i} - \hat{\mu}_{n}(X)) = 0 \text{ where } \psi_{\alpha}(x) : \begin{cases} \frac{x}{\alpha} & \text{if } |x| \leq \alpha \\ \operatorname{sign}(x) & \text{if } |x| > \alpha \end{cases}$$

Then:

Then:

$$0 = \sum_{i:|x_i - \hat{\mu}_n(X)| \le \alpha} \alpha(x_i - \hat{\mu}_n(X)) + \sum_{i:x_i > \hat{\mu}_n(X) + \alpha} \alpha + \sum_{i:x_i < \hat{\mu}_n(X) - \alpha} -\alpha$$

$$0 = \sum_{i:|x_i - \hat{\mu}_n(X)| \le \alpha} \alpha(x_i - \hat{\mu}_n(X)) + \sum_{i:x_i > \hat{\mu}_n(X) + \alpha} \alpha + \hat{\mu}_n(X) - \hat{\mu}_n(X)$$

$$+ \sum_{i:x_i < \hat{\mu}_n(X) - \alpha} -\alpha - \hat{\mu}_n(X) + \hat{\mu}_n(X)$$

Interpretation: $\hat{\mu}_n(X)$ is the empirical mean of the modified

Computational difficulties

- ▶ some methods are convex and smooth $(\rho(x) = x^2/2$, Huber)
- \blacktriangleright some methods are convex but non-smooth (pinball, $\rho(x)=|x|,$ etc.)
- some methods are non-convex but smooth (bi-square)

Numerical "recipes" will be investigated later on.

Table of Contents

Location

Contamination model
M-estimators of location
Asymptotic normality of M-estimators

Scale/dispersion

Dispersion model

M-estimators of scale

Simultaneous location and scale estimation

Simultaneous location and dispersion model Simultaneous M-estimators

Asymptotic / minimax result

Settings

How the Huber loss was discovered

Simplest dispersion model

$$x_i = \sigma_* \varepsilon_i, \text{ for } i = 1, \dots, n$$
 (2)

- $\sigma_* \in \mathbb{R}_{++}$ is the (true) scale parameter
- $ightharpoonup x_1, \ldots, x_n$ are n observations in \mathbb{R}^p ; and $X = [x_1, \ldots, x_n]$
- $ightharpoonup arepsilon_1, \ldots, arepsilon_n$ and are *i.i.d.* random variable having the same c.d.f. F and density f

Consequence: x_1, \ldots, x_n are *i.i.d.* with density $\frac{1}{\sigma} f(\dot{\sigma})$

MLE for scale estimation

Assuming model (2) such that f is the density (or p.d.f.) of F, the likelihood function is:

$$\mathcal{L}(x_1, \dots, x_n; \sigma) = \frac{1}{\sigma^n} \prod_{i=1}^n f\left(\frac{x_i}{\sigma}\right)$$

The Maximum Likelihood Estimation (MLE) of σ is defined by:

$$\hat{\sigma}_n^{\text{MLE}} \in \operatorname*{arg\,max}_{\sigma \in \mathbb{R}_{++}} \mathcal{L}(x_1, \dots, x_n; \sigma)$$

Transforming using $-\log$ then

$$\hat{\sigma}_n^{\text{MLE}} \in \operatorname*{arg\,min}_{\sigma \in \mathbb{R}_{++}} \frac{1}{n} \log(\sigma) - \sum_{i=1}^n \log\left(f\left(\frac{x_i}{\sigma}\right)\right)$$

For smooth function f (i.e., when f' exist) $\hat{\sigma}_n^{\rm MLE}$ satisfies:

$$\frac{1}{n} \sum_{i=1}^{n} \nu \left(\frac{x_i}{\hat{\sigma}_n^{\text{MLE}}} \right) = 1, \quad \text{where} \quad \nu(x) = -\frac{x \cdot f'(x)}{f(x)}$$

Example

Distribution	f(x)	$\nu(x)$	$\hat{\sigma}_n^{ ext{MLE}}$
Gaussian	$\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x^2}{2}\right)$	x^2	$\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}}$
Laplace	$\frac{1}{2}\exp(- x)$		$\frac{1}{n} \sum_{i=1}^{n} x_i $

Table of Contents

Location

Contamination model
M-estimators of location
Asymptotic normality of M-estimators

Scale/dispersion

Dispersion model

M-estimators of scale

Simultaneous location and scale estimation

Simultaneous location and dispersion model Simultaneous M-estimators

Asymptotic / minimax result

Settings

How the Huber loss was discovered

M-estimators of scale

Definition

We call M-estimator of scale associated to a function ν any estimator $\hat{\sigma}_n$ obtained solving the following equation w.r.t. σ :

$$\frac{1}{n} \sum_{i=1}^{n} \nu\left(\frac{x_i}{\sigma}\right) = 1$$

- ▶ when $\forall i \in [n], x_i = 0$, it is natural to set $\hat{\sigma}(0, \dots, 0) = 0$
- $\hat{\sigma}$ is then scale equivariant $\hat{\sigma}_n(\alpha x_1, \dots, \alpha x_n) = \alpha \hat{\sigma}_n(x_1, \dots, x_n)$
- when n is even and $\nu=21\!\!1_{[-1,1]^c}$, then $\hat{\sigma}_n=\mathrm{Med}_n(|x_1|,\ldots,|x_n|).$

Intuitive view on M-estimators

Assume for simplicity that $\nu'(0)=0$ and that $\nu''(0)>0$, then one can defined

$$W(x) = \begin{cases} \frac{\nu(x)}{x^2} & \text{if } x \neq 0\\ \nu''(0) & \text{if } x = 0 \end{cases}$$

and then

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n W\left(\frac{x_i}{\hat{\sigma}_n}\right) x_i^2$$

Interpretation: this is a weighted average, with weights (often) decaying when $\frac{x_i}{\hat{\sigma}_n}$ is large (*i.e.*, for outlying observations)

Classical weights

- square case $\rho(x) = x^2$, W(x) = 1
- ▶ Bi-square case ($\alpha = 1$)

$$\rho(x):\begin{cases} 1-[1-(\frac{x}{\alpha})^2]^3 & \text{if } |x|\leq \alpha\\ 1 & \text{if } |x|>\alpha \end{cases} \quad W(x)=\min\left(3-3x^2+x^4,\frac{1}{x^2}\right)$$

Table of Contents

Location

Contamination model
M-estimators of location
Asymptotic normality of M-estimators

Scale/dispersion

Dispersion model
M-estimators of scale

Simultaneous location and scale estimation

Simultaneous location and dispersion model

Simultaneous M-estimators

Asymptotic / minimax result

Settings

How the Huber loss was discovered

Location/dispersion model

$$x_i = \mu^* + \sigma_* \varepsilon_i, \text{ for } i = 1, \dots, n$$
(3)

- $m \mu^* \in \mathbb{R}^p$ is the true parameter
- $ightharpoonup x_1, \ldots, x_n$ are n observations in \mathbb{R}^p ; and $X = [x_1, \ldots, x_n]$
- \triangleright $\varepsilon_1, \ldots, \varepsilon_n$ model the noise variables (also in \mathbb{R}^p) and are *i.i.d.* random variable having the same density f

Consequence: x_1, \ldots, x_n are *i.i.d.* with p.d.f. $\frac{1}{\sigma_*} f\left(\frac{\cdot - \mu^*}{\sigma_*}\right)$

Table of Contents

Location

Contamination model
M-estimators of location
Asymptotic normality of M-estimators

Scale/dispersion

Dispersion model M-estimators of scale

Simultaneous location and scale estimation

Simultaneous location and dispersion model

Simultaneous M-estimators

Asymptotic / minimax result

Settings

How the Huber loss was discovered

Simultaneous MLE

Assuming model (1) such that f is the density (or p.d.f.) of F, the simultaneous MLE estimators of location and scale are:

$$(\hat{\mu}_n^{\text{MLE}}, \hat{\sigma}_n^{\text{MLE}}) \in \underset{(\mu, \sigma) \in \mathbb{R}^p \times \mathbb{R}_{++}}{\operatorname{arg \, max}} \left[\frac{1}{\sigma^n} \prod_{i=1}^n f\left(\frac{x_i - \mu}{\sigma}\right) \right]$$

or equivalently:

$$(\hat{\mu}_n^{\text{MLE}}, \hat{\sigma}_n^{\text{MLE}}) \in \operatorname*{arg\,min}_{(\mu,\sigma) \in \mathbb{R}^p \times \mathbb{R}_{++}} \left[\frac{1}{n} \sum_{i=1}^n \rho \left(\frac{x_i - \mu}{\sigma} \right) + \log \sigma \right]$$

where $\rho = -\log(f)$.

Simultaneous M-estimators

Simultaneous M-estimators of location and estimation are $\hat{\mu}$ and $\hat{\sigma}$ satisfying for functions $\psi=\rho'$ and ν the following system of equation:

$$\begin{cases} \frac{1}{n} \sum_{i=1}^{n} \psi\left(\frac{x_i - \hat{\mu}_n}{\hat{\sigma}_n}\right) = 0\\ \frac{1}{n} \sum_{i=1}^{n} \nu\left(\frac{x_i - \hat{\mu}_n}{\hat{\sigma}_n}\right) = 1 \end{cases}$$

 $\underline{\rm Rem}:$ in the MLE case $\psi(x)=-\frac{f'(x)}{f(x)}$ and $\nu(x)=-\frac{x\cdot f'(x)}{f(x)}$

Computational difficulties

Note that even if ρ is a convex function the function $\sigma \to \rho(z/\sigma) + \log(\sigma)$ is often non-convex

Several ways can be used to alleviate that:

- ► Change of variable: $\gamma = \frac{1}{\sigma}$
- ► Concomitant estimation, see Section 7.7, Huber (1981):

Substitute
$$\operatorname*{arg\,min}_{(\mu,\sigma)\in\mathbb{R}^p\times\mathbb{R}_{++}} \left[\frac{1}{n} \sum_{i=1}^n \rho\left(\frac{x_i-\mu}{\sigma}\right) + \log\sigma \right]$$
 by
$$\operatorname*{arg\,min}_{(\mu,\sigma)\in\mathbb{R}^p\times\mathbb{R}_{++}} \left[\frac{1}{n} \sum_{i=1}^n \sigma \cdot \rho\left(\frac{x_i-\mu}{\sigma}\right) \right]$$

Rem: $(\mu, \sigma) \to \sigma \cdot \rho\left(\frac{x-\mu}{\sigma}\right)$ is jointly convex as it is the **perspective** function of $\rho(x-\cdot)$, see for instance Section 3.2.6, Boyd and Vandenberghe (2004)

Table of Contents

Location

Contamination model
M-estimators of location
Asymptotic normality of M-estimators

Scale/dispersion

Dispersion model M-estimators of scale

Simultaneous location and scale estimation

Simultaneous location and dispersion model Simultaneous M-estimators

Asymptotic / minimax result Settings

How the Huber loss was discovered

Asymptotic for M-estimation

Assume from now on that $\check{\mu}=0$ and that $X\sim F$. Then, $\sqrt{n}\hat{\mu}_n\to_d \mathcal{N}(0,V^2(\psi,F)),\quad \text{where}\quad V^2(\psi,F)=\frac{\mathbb{E}_F\left(\psi(X)^2\right)}{\left(\mathbb{E}_F\psi'(X)\right)^2}$

Theorem

$$V^2(\psi,F) \geq rac{1}{\mathbb{E}_F\left[\left(rac{f'(X)}{f(X)}
ight)^2
ight]}, ext{ with equality when } \psi \propto -rac{f'}{f}$$

Rem: equality holds when one choses ψ (or ρ) associated to the MLE, leading to the best asymptotic performance. Though, one needs to know the distribution of F to consider $\rho = -\log(f)$

First, note that by integration by part:

$$-\mathbb{E}_F(\psi'(X)) = -\int \psi'(t)f(t)dt = \int \psi(t)f'(t)dt$$

First, note that by integration by part:

$$-\mathbb{E}_F(\psi'(X)) = -\int \psi'(t)f(t)dt = \int \psi(t)f'(t)dt$$
$$= \int \psi(t)\frac{f'(t)}{f(t)}f(t)dt = \mathbb{E}_F\left(\psi(X)\frac{f'(X)}{f(X)}\right)$$

First, note that by integration by part:

$$-\mathbb{E}_F(\psi'(X)) = -\int \psi'(t)f(t)dt = \int \psi(t)f'(t)dt$$
$$= \int \psi(t)\frac{f'(t)}{f(t)}f(t)dt = \mathbb{E}_F\left(\psi(X)\frac{f'(X)}{f(X)}\right)$$

First, note that by integration by part:

$$-\mathbb{E}_F(\psi'(X)) = -\int \psi'(t)f(t)dt = \int \psi(t)f'(t)dt$$
$$= \int \psi(t)\frac{f'(t)}{f(t)}f(t)dt = \mathbb{E}_F\left(\psi(X)\frac{f'(X)}{f(X)}\right)$$

$$\left[\mathbb{E}_F\left(\psi(X)\frac{f'(X)}{f(X)}\right)\right]^2 = \left(\int \psi(t)\frac{f'(t)}{f(t)}f(t)dt\right)^2$$

First, note that by integration by part:

$$-\mathbb{E}_F(\psi'(X)) = -\int \psi'(t)f(t)dt = \int \psi(t)f'(t)dt$$
$$= \int \psi(t)\frac{f'(t)}{f(t)}f(t)dt = \mathbb{E}_F(\psi(X)\frac{f'(X)}{f(X)})$$

$$\left[\mathbb{E}_F\left(\psi(X)\frac{f'(X)}{f(X)}\right)\right]^2 = \left(\int \psi(t)\frac{f'(t)}{f(t)}f(t)dt\right)^2$$

$$\leq \left(\int \psi^2(t)f(t)dt\right)\left(\int \left(\frac{f'(t)}{f(t)}\right)^2f(t)dt\right)$$

First, note that by integration by part:

$$-\mathbb{E}_F(\psi'(X)) = -\int \psi'(t)f(t)dt = \int \psi(t)f'(t)dt$$
$$= \int \psi(t)\frac{f'(t)}{f(t)}f(t)dt = \mathbb{E}_F(\psi(X)\frac{f'(X)}{f(X)})$$

$$\begin{split} \left[\mathbb{E}_{F} \left(\psi(X) \frac{f'(X)}{f(X)} \right) \right]^{2} &= \left(\int \psi(t) \frac{f'(t)}{f(t)} f(t) dt \right)^{2} \\ &\leq \left(\int \psi^{2}(t) f(t) dt \right) \left(\int \left(\frac{f'(t)}{f(t)} \right)^{2} f(t) dt \right) \\ &= \mathbb{E}_{F} \left(\psi^{2}(X) \right) \mathbb{E}_{F} \left[\left(\frac{f'(X)}{f(X)} \right)^{2} \right] \end{split}$$

First, note that by integration by part:

$$-\mathbb{E}_F(\psi'(X)) = -\int \psi'(t)f(t)dt = \int \psi(t)f'(t)dt$$
$$= \int \psi(t)\frac{f'(t)}{f(t)}f(t)dt = \mathbb{E}_F\left(\psi(X)\frac{f'(X)}{f(X)}\right)$$

Using Cauchy-Schwartz inequality:

$$\left[\mathbb{E}_{F}\left(\psi(X)\frac{f'(X)}{f(X)}\right)\right]^{2} = \left(\int \psi(t)\frac{f'(t)}{f(t)}f(t)dt\right)^{2}$$

$$\leq \left(\int \psi^{2}(t)f(t)dt\right)\left(\int \left(\frac{f'(t)}{f(t)}\right)^{2}f(t)dt\right)$$

$$= \mathbb{E}_{F}\left(\psi^{2}(X)\right)\mathbb{E}_{F}\left[\left(\frac{f'(X)}{f(X)}\right)^{2}\right]$$

Hence, $\mathbb{E}_F \left| \left(\frac{f'(X)}{f(X)} \right)^2 \right| \geq \frac{(\mathbb{E}_F \psi'(X))^2}{\mathbb{E}_F (\psi(X)^2)}$

Table of Contents

Location

Contamination model

M-estimators of location

Asymptotic normality of M-estimators

Scale/dispersion

Dispersion model

M-estimators of scale

Simultaneous location and scale estimation

Simultaneous location and dispersion model Simultaneous M-estimators

Asymptotic / minimax result

Settings

How the Huber loss was discovered

Minimax / Game theory point of view³

- ▶ Players: Practitioner vs. (adversarial) Nature
- ▶ Known parameters: G and $\epsilon \in [0,1[$ are known (to both nature and practitioner) and samples are drawn according to $F_{\epsilon} := F = (1-\epsilon)G + \epsilon H$ with a corruption level ϵ , *i.e.*, $f_{\epsilon} := f = (1-\epsilon)g + \epsilon h$, where $-\log(g)$ is convex; *i.e.*, g is log-concave
- ▶ Objective: the player aims at minimizing the asymptotic variance $V^2(\psi,F)$
- \blacktriangleright Practitioner's action: picks ψ for "optimal" M-estimation
- Nature's action: picks the distribution H that harms the asymptotic variance the most

³P. J. Huber. "Robust estimation of a location parameter". In: Ann. Math. Statist. 35 (1964), pp. 73–101.

Equilibrium

Theorem

There exists $F_0 = (1 - \epsilon)G + \epsilon H_0$ and ψ_0 s.t.

$$\forall F \text{ s.t. } \mathbb{E}_F(\psi_0) = 0, \quad V^2(\psi_0, F) \leq V^2(\psi_0, F_0) \leq V^2(\psi, F_0)$$

Let $[t_0, t_1]$ be the largest interval such that $|g'/g| \le \alpha$ and let $a(t_0) + a(t_1)$

$$(1 - \epsilon)^{-1} = \int_{t_0}^{t_1} g(t)dt + \frac{g(t_0) + g(t_1)}{\alpha}$$

$$f_0(t) = \begin{cases} (1 - \epsilon)g(t_0)e^{\alpha(t - t_0)} & \text{if } t \le t_0\\ (1 - \epsilon)g(t) & \text{if } t_0 < t < t_1\\ (1 - \epsilon)g(t_1)e^{-\alpha(t - t_1)} & \text{if } t \ge t_1 \end{cases}$$

and $\psi_0 = -f_0'/f_0$ is monotone and bounded by α .

Rem: $V^2(\psi_0,F_0) \leq V^2(\psi,F_0)$ was proved earlier noticing that the best choice is $\psi=\psi_0:=-f_0'/f_0$

Huber loss as an equilibrium

___ | Corollary | ____

Assume that $g(x)=\frac{1}{\sqrt{2\pi}}\exp(-\frac{x^2}{2})$. Then the equilibrium is reached for $F_0=(1-\epsilon)G+\epsilon H_0$ and ψ_0 s.t.

$$(1 - \epsilon)^{-1} = \int_{-\alpha}^{\alpha} g(t)dt + \frac{g(-\alpha) + g(\alpha)}{\alpha}$$

$$f_0(t) = \begin{cases} (1 - \epsilon)g(-\alpha)e^{\alpha(t+\alpha)} & \text{if } t \le -\alpha\\ (1 - \epsilon)g(t) & \text{if } -\alpha < t < \alpha\\ (1 - \epsilon)g(\alpha)e^{-\alpha(t-\alpha)} & \text{if } t \ge \alpha \end{cases}$$

Rem: $\psi_0(x) := -f_0'(x)/f_0(x) = \min(\max(-\alpha, x), \alpha)$ is, up to re-scaling, the Huber ψ_α function introduced earlier

$$f_0(t) \propto \exp(-\rho_\alpha(t))$$

$$h_0 := \frac{1}{\epsilon} [f_0 - (1 - \epsilon)g]$$

$$f_0(t) \propto \exp(-\rho_\alpha(t))$$

$$h_0 := \frac{1}{\epsilon} [f_0 - (1 - \epsilon)g]$$

$$f_0(t) \propto \exp(-\rho_\alpha(t))$$

$$h_0 := \frac{1}{\epsilon} [f_0 - (1 - \epsilon)g]$$

$$f_0(t) \propto \exp(-\rho_\alpha(t))$$

$$h_0 := \frac{1}{\epsilon} [f_0 - (1 - \epsilon)g]$$

$$f_0(t) \propto \exp(-\rho_{\alpha}(t))$$

$$h_0 := \frac{1}{\epsilon} [f_0 - (1 - \epsilon)g]$$

Proof of theorem

$$\frac{1}{1-\epsilon} = \int_{t_0}^{t_1} g(t)dt + \frac{g(t_0) + g(t_1)}{\alpha}$$

$$f_0(t) = \begin{cases} (1-\epsilon)g(t_0)e^{\alpha(t-t_0)} & \text{if } t \le t_0\\ (1-\epsilon)g(t) & \text{if } t_0 < t < t_1\\ (1-\epsilon)g(t_1)e^{-\alpha(t-t_1)} & \text{if } t \ge t_1 \end{cases}$$

Proof of theorem

$$\frac{1}{1 - \epsilon} = \int_{t_0}^{t_1} g(t)dt + \frac{g(t_0) + g(t_1)}{\alpha}$$

$$f_0(t) = \begin{cases} (1 - \epsilon)g(t_0)e^{\alpha(t - t_0)} & \text{if } t \le t_0\\ (1 - \epsilon)g(t) & \text{if } t_0 < t < t_1\\ (1 - \epsilon)g(t_1)e^{-\alpha(t - t_1)} & \text{if } t \ge t_1 \end{cases}$$

Fact 1: f_0 is a p.d.f.

Proof of theorem

$$\begin{split} \frac{1}{1-\epsilon} &= \int_{t_0}^{t_1} g(t)dt + \frac{g(t_0) + g(t_1)}{\alpha} \\ f_0(t) &= \begin{cases} (1-\epsilon)g(t_0)e^{\alpha(t-t_0)} & \text{if } t \leq t_0 \\ (1-\epsilon)g(t) & \text{if } t_0 < t < t_1 \\ (1-\epsilon)g(t_1)e^{-\alpha(t-t_1)} & \text{if } t \geq t_1 \end{cases} \end{split}$$

Fact 1: f_0 is a p.d.f.

- ightharpoonup f is non-negative since g is non-negative
- $\int f_0(t)dt = 1$ since ϵ is constructed for that

Fact 2: $h_0 := \frac{1}{\epsilon} [f_0 - (1 - \epsilon)g]$ defined below is a p.d.f.

$$h_0(t) := \begin{cases} \frac{1-\epsilon}{\epsilon} [g(t_0)e^{\alpha(t-t_0)} - g(t)] & \text{if } t \leq t_0 \\ 0 & \text{if } t_0 < t < t_1 \\ \frac{1-\epsilon}{\epsilon} [g(t_1)e^{-\alpha(t-t_1)} - g(t)] & \text{if } t \geq t_1 \end{cases}$$

Fact 2: $h_0 := \frac{1}{\epsilon} [f_0 - (1 - \epsilon)g]$ defined below is a p.d.f.

$$h_0(t) := \begin{cases} \frac{1-\epsilon}{\epsilon} [g(t_0)e^{\alpha(t-t_0)} - g(t)] & \text{if } t \le t_0 \\ 0 & \text{if } t_0 < t < t_1 \\ \frac{1-\epsilon}{\epsilon} [g(t_1)e^{-\alpha(t-t_1)} - g(t)] & \text{if } t \ge t_1 \end{cases}$$

Proof:
$$\int h_0 = \frac{1}{\epsilon} \int [f_0 - (1 - \epsilon)g] = 1$$
 since $\int f_0 = \int g = 1$.

Fact 2: $h_0 := \frac{1}{\epsilon} [f_0 - (1 - \epsilon)g]$ defined below is a p.d.f.

$$h_0(t) := \begin{cases} \frac{1-\epsilon}{\epsilon} [g(t_0)e^{\alpha(t-t_0)} - g(t)] & \text{if } t \le t_0 \\ 0 & \text{if } t_0 < t < t_1 \\ \frac{1-\epsilon}{\epsilon} [g(t_1)e^{-\alpha(t-t_1)} - g(t)] & \text{if } t \ge t_1 \end{cases}$$

Proof:
$$\int h_0 = \frac{1}{\epsilon} \int [f_0 - (1 - \epsilon)g] = 1$$
 since $\int f_0 = \int g = 1$.

Now $-\log(g)$ is convex so this function is lower bounded by its tangent at t_0 , and for any $t \le t_0$

Fact 2: $h_0 := \frac{1}{\epsilon} [f_0 - (1 - \epsilon)g]$ defined below is a p.d.f.

$$h_0(t) := \begin{cases} \frac{1-\epsilon}{\epsilon}[g(t_0)e^{\alpha(t-t_0)} - g(t)] & \text{if } t \leq t_0 \\ 0 & \text{if } t_0 < t < t_1 \\ \frac{1-\epsilon}{\epsilon}[g(t_1)e^{-\alpha(t-t_1)} - g(t)] & \text{if } t \geq t_1 \end{cases}$$

Proof: $\int h_0 = \frac{1}{\epsilon} \int [f_0 - (1 - \epsilon)g] = 1$ since $\int f_0 = \int g = 1$.

Now $-\log(g)$ is convex so this function is lower bounded by its tangent at t_0 , and for any $t \le t_0$

$$-\log(g)(t) \ge -\log(g)(t_0) + \frac{\partial}{\partial t} [-\log g(t_0)](t - t_0)$$

Fact 2: $h_0 := \frac{1}{\epsilon} [f_0 - (1 - \epsilon)g]$ defined below is a p.d.f.

$$h_0(t) := \begin{cases} \frac{1-\epsilon}{\epsilon} [g(t_0)e^{\alpha(t-t_0)} - g(t)] & \text{if } t \le t_0 \\ 0 & \text{if } t_0 < t < t_1 \\ \frac{1-\epsilon}{\epsilon} [g(t_1)e^{-\alpha(t-t_1)} - g(t)] & \text{if } t \ge t_1 \end{cases}$$

Proof: $\int h_0 = \frac{1}{\epsilon} \int [f_0 - (1 - \epsilon)g] = 1$ since $\int f_0 = \int g = 1$.

Now $-\log(g)$ is convex so this function is lower bounded by its tangent at t_0 , and for any $t \le t_0$

$$-\log(g)(t) \ge -\log(g)(t_0) + \frac{\partial}{\partial t} [-\log g(t_0)](t - t_0)$$

$$\ge -\log(g)(t_0) - \alpha(t - t_0)$$

where we have used $\frac{\partial}{\partial t}[-\log g(t_0)] = -g'(t_0)/g(t_0) \ge -\alpha$. Hence $h_0(t) \ge 0$ when $t \le t_0$; similarly $h_0(t) \ge 0$ when $t \ge t_1$.

Fact 4:

$$V^{2}(\psi_{0}, F_{0}) = \frac{(1 - \epsilon)\mathbb{E}_{G} \left[\psi_{0}(X)^{2}\right] + \epsilon \alpha^{2}}{\left[(1 - \epsilon)\mathbb{E}_{G}\psi'_{0}(X)\right]^{2}}$$

Fact 4:

$$V^{2}(\psi_{0}, F_{0}) = \frac{(1 - \epsilon)\mathbb{E}_{G} \left[\psi_{0}(X)^{2}\right] + \epsilon \alpha^{2}}{\left[(1 - \epsilon)\mathbb{E}_{G}\psi'_{0}(X)\right]^{2}}$$

$$V^{2}(\psi_{0}, F_{0}) = \frac{\mathbb{E}_{F_{0}} \left[\psi_{0}(X)^{2} \right]}{\left(\mathbb{E}_{F_{0}} \psi'_{0}(X) \right)^{2}}$$

Fact 4:

$$V^{2}(\psi_{0}, F_{0}) = \frac{(1 - \epsilon)\mathbb{E}_{G} \left[\psi_{0}(X)^{2}\right] + \epsilon \alpha^{2}}{\left[(1 - \epsilon)\mathbb{E}_{G}\psi'_{0}(X)\right]^{2}}$$

$$V^{2}(\psi_{0}, F_{0}) = \frac{\mathbb{E}_{F_{0}} \left[\psi_{0}(X)^{2} \right]}{\left(\mathbb{E}_{F_{0}} \psi'_{0}(X) \right)^{2}} = \frac{(1 - \epsilon) \mathbb{E}_{G} \left[\psi_{0}(X)^{2} \right] + \epsilon \mathbb{E}_{H_{0}} \left[\psi_{0}(X)^{2} \right]}{\left[(1 - \epsilon) \mathbb{E}_{G} \psi'_{0}(X) + \epsilon \mathbb{E}_{H_{0}} \psi'_{0}(X) \right]^{2}}$$

Fact 4:

$$V^{2}(\psi_{0}, F_{0}) = \frac{(1 - \epsilon)\mathbb{E}_{G} \left[\psi_{0}(X)^{2}\right] + \epsilon \alpha^{2}}{\left[(1 - \epsilon)\mathbb{E}_{G}\psi'_{0}(X)\right]^{2}}$$

$$V^{2}(\psi_{0}, F_{0}) = \frac{\mathbb{E}_{F_{0}} \left[\psi_{0}(X)^{2} \right]}{\left(\mathbb{E}_{F_{0}} \psi'_{0}(X) \right)^{2}} = \frac{(1 - \epsilon) \mathbb{E}_{G} \left[\psi_{0}(X)^{2} \right] + \epsilon \mathbb{E}_{H_{0}} \left[\psi_{0}(X)^{2} \right]}{\left[(1 - \epsilon) \mathbb{E}_{G} \psi'_{0}(X) + \epsilon \mathbb{E}_{H_{0}} \psi'_{0}(X) \right]^{2}}$$

Then, reminding
$$\psi_0(x) := -\frac{f_0'(x)}{f_0(x)} = \min\left(\max\left(-\alpha, -\frac{g'(x)}{g(x)}\right), \alpha\right)$$

Fact 4:

$$V^{2}(\psi_{0}, F_{0}) = \frac{(1 - \epsilon)\mathbb{E}_{G} \left[\psi_{0}(X)^{2}\right] + \epsilon \alpha^{2}}{\left[(1 - \epsilon)\mathbb{E}_{G}\psi'_{0}(X)\right]^{2}}$$

Proof:

$$V^{2}(\psi_{0}, F_{0}) = \frac{\mathbb{E}_{F_{0}} \left[\psi_{0}(X)^{2} \right]}{\left(\mathbb{E}_{F_{0}} \psi'_{0}(X) \right)^{2}} = \frac{(1 - \epsilon) \mathbb{E}_{G} \left[\psi_{0}(X)^{2} \right] + \epsilon \mathbb{E}_{H_{0}} \left[\psi_{0}(X)^{2} \right]}{\left[(1 - \epsilon) \mathbb{E}_{G} \psi'_{0}(X) + \epsilon \mathbb{E}_{H_{0}} \psi'_{0}(X) \right]^{2}}$$

Then, reminding
$$\psi_0(x) := -\frac{f_0'(x)}{f_0(x)} = \min\left(\max\left(-\alpha, -\frac{g'(x)}{g(x)}\right), \alpha\right)$$

 $|\psi_0(t)|=lpha$ and $\psi_0'(t)=0$ for $t\notin [t_0,t_1]$

Fact 4:

$$V^{2}(\psi_{0}, F_{0}) = \frac{(1 - \epsilon)\mathbb{E}_{G} \left[\psi_{0}(X)^{2}\right] + \epsilon \alpha^{2}}{\left[(1 - \epsilon)\mathbb{E}_{G}\psi'_{0}(X)\right]^{2}}$$

$$V^{2}(\psi_{0}, F_{0}) = \frac{\mathbb{E}_{F_{0}} \left[\psi_{0}(X)^{2} \right]}{\left(\mathbb{E}_{F_{0}} \psi'_{0}(X) \right)^{2}} = \frac{(1 - \epsilon) \mathbb{E}_{G} \left[\psi_{0}(X)^{2} \right] + \epsilon \mathbb{E}_{H_{0}} \left[\psi_{0}(X)^{2} \right]}{\left[(1 - \epsilon) \mathbb{E}_{G} \psi'_{0}(X) + \epsilon \mathbb{E}_{H_{0}} \psi'_{0}(X) \right]^{2}}$$

Then, reminding
$$\psi_0(x) := -\frac{f_0'(x)}{f_0(x)} = \min\left(\max\left(-\alpha, -\frac{g'(x)}{g(x)}\right), \alpha\right)$$

- $\blacktriangleright |\psi_0(t)| = \alpha$ and $\psi_0'(t) = 0$ for $t \notin [t_0, t_1]$
- ▶ $h_0(t) = 0$ for $t \in [t_0, t_1]$

Fact 4:

$$V^{2}(\psi_{0}, F_{0}) = \frac{(1 - \epsilon)\mathbb{E}_{G} \left[\psi_{0}(X)^{2}\right] + \epsilon \alpha^{2}}{\left[(1 - \epsilon)\mathbb{E}_{G}\psi'_{0}(X)\right]^{2}}$$

Proof:

$$V^{2}(\psi_{0}, F_{0}) = \frac{\mathbb{E}_{F_{0}} \left[\psi_{0}(X)^{2} \right]}{\left(\mathbb{E}_{F_{0}} \psi'_{0}(X) \right)^{2}} = \frac{(1 - \epsilon) \mathbb{E}_{G} \left[\psi_{0}(X)^{2} \right] + \epsilon \mathbb{E}_{H_{0}} \left[\psi_{0}(X)^{2} \right]}{\left[(1 - \epsilon) \mathbb{E}_{G} \psi'_{0}(X) + \epsilon \mathbb{E}_{H_{0}} \psi'_{0}(X) \right]^{2}}$$

Then, reminding $\psi_0(x) := -\frac{f_0'(x)}{f_0(x)} = \min\left(\max\left(-\alpha, -\frac{g'(x)}{g(x)}\right), \alpha\right)$

- $ightharpoonup |\psi_0(t)| = lpha$ and $\psi_0'(t) = 0$ for $t \notin [t_0, t_1]$
- ▶ $h_0(t) = 0$ for $t \in [t_0, t_1]$

Hence, $\mathbb{E}_{H_0}\left[\psi_0(X)^2\right]=\alpha^2$ and $\mathbb{E}_{H_0}\psi_0'(X)=0$, and

$$V^{2}(\psi_{0}, F_{0}) \leq \frac{(1 - \epsilon)\mathbb{E}_{G}\left[\psi_{0}(X)^{2}\right] + \epsilon\alpha^{2}}{\left[(1 - \epsilon)\mathbb{E}_{G}\psi'_{0}(X)\right]^{2}}$$

Fact 5: for any
$$F$$
 with $\mathbb{E}_F(\psi_0) = 0$
$$V^2(\psi_0, F) \leq V^2(\psi_0, F_0) = \frac{(1 - \epsilon)\mathbb{E}_G\left[\psi_0(X)^2\right] + \epsilon\alpha^2}{\left[(1 - \epsilon)\mathbb{E}_G\psi_0'(X)\right]^2}$$

Fact 5: for any
$$F$$
 with $\mathbb{E}_F(\psi_0) = 0$
$$V^2(\psi_0, F) \le V^2(\psi_0, F_0) = \frac{(1 - \epsilon)\mathbb{E}_G\left[\psi_0(X)^2\right] + \epsilon\alpha^2}{\left[(1 - \epsilon)\mathbb{E}_G\psi_0'(X)\right]^2}$$

$$V^{2}(\psi_{0}, F) = \frac{\mathbb{E}_{F} \left[\psi_{0}(X)^{2}\right]}{\left(\mathbb{E}_{F} \psi'_{0}(X)\right)^{2}}$$

Fact 5: for any
$$F$$
 with $\mathbb{E}_F(\psi_0) = 0$

$$V^2(\psi_0, F) \le V^2(\psi_0, F_0) = \frac{(1 - \epsilon)\mathbb{E}_G\left[\psi_0(X)^2\right] + \epsilon\alpha^2}{\left[(1 - \epsilon)\mathbb{E}_G\psi_0'(X)\right]^2}$$

$$V^{2}(\psi_{0}, F) = \frac{\mathbb{E}_{F} \left[\psi_{0}(X)^{2} \right]}{\left(\mathbb{E}_{F} \psi_{0}'(X) \right)^{2}} = \frac{(1 - \epsilon) \mathbb{E}_{G} \left[\psi_{0}(X)^{2} \right] + \epsilon \mathbb{E}_{H} \left[\psi_{0}(X)^{2} \right]}{\left[(1 - \epsilon) \mathbb{E}_{G} \psi_{0}'(X) + \epsilon \mathbb{E}_{H} \psi_{0}'(X) \right]^{2}}$$

Fact 5: for any
$$F$$
 with $\mathbb{E}_F(\psi_0) = 0$
$$V^2(\psi_0, F) \leq V^2(\psi_0, F_0) = \frac{(1 - \epsilon)\mathbb{E}_G\left[\psi_0(X)^2\right] + \epsilon\alpha^2}{\left[(1 - \epsilon)\mathbb{E}_G\psi_0'(X)\right]^2}$$

$$V^{2}(\psi_{0}, F) = \frac{\mathbb{E}_{F} \left[\psi_{0}(X)^{2} \right]}{\left(\mathbb{E}_{F} \psi_{0}'(X) \right)^{2}} = \frac{(1 - \epsilon) \mathbb{E}_{G} \left[\psi_{0}(X)^{2} \right] + \epsilon \mathbb{E}_{H} \left[\psi_{0}(X)^{2} \right]}{\left[(1 - \epsilon) \mathbb{E}_{G} \psi_{0}'(X) + \epsilon \mathbb{E}_{H} \psi_{0}'(X) \right]^{2}}$$

Then, reminding
$$\psi_0(x) := -\frac{f_0'(x)}{f_0(x)} = \min\left(\max\left(-\alpha, -\frac{g'(x)}{g(x)}\right), \alpha\right)$$

$$\begin{array}{l} \underline{\text{Fact 5}}\text{: for any } F \text{ with } \mathbb{E}_F(\psi_0) = 0 \\ V^2(\psi_0,F) \leq V^2(\psi_0,F_0) = \frac{(1-\epsilon)\mathbb{E}_G\left[\psi_0(X)^2\right] + \epsilon\alpha^2}{\left[(1-\epsilon)\mathbb{E}_G\psi_0'(X)\right]^2} \end{array}$$

$$V^{2}(\psi_{0}, F) = \frac{\mathbb{E}_{F} \left[\psi_{0}(X)^{2} \right]}{\left(\mathbb{E}_{F} \psi_{0}'(X) \right)^{2}} = \frac{(1 - \epsilon) \mathbb{E}_{G} \left[\psi_{0}(X)^{2} \right] + \epsilon \mathbb{E}_{H} \left[\psi_{0}(X)^{2} \right]}{\left[(1 - \epsilon) \mathbb{E}_{G} \psi_{0}'(X) + \epsilon \mathbb{E}_{H} \psi_{0}'(X) \right]^{2}}$$

Then, reminding
$$\psi_0(x) := -\frac{f_0'(x)}{f_0(x)} = \min\left(\max\left(-\alpha, -\frac{g'(x)}{g(x)}\right), \alpha\right)$$

$$|\psi_0(x)| \le \alpha$$
 and $\mathbb{E}_H \left[\psi_0(X)^2 \right] \le \alpha^2$

$$\begin{array}{l} \underline{\text{Fact 5}}\text{: for any } F \text{ with } \mathbb{E}_F(\psi_0) = 0 \\ V^2(\psi_0,F) \leq V^2(\psi_0,F_0) = \frac{(1-\epsilon)\mathbb{E}_G\left[\psi_0(X)^2\right] + \epsilon\alpha^2}{\left[(1-\epsilon)\mathbb{E}_G\psi_0'(X)\right]^2} \end{array}$$

$$V^{2}(\psi_{0}, F) = \frac{\mathbb{E}_{F} \left[\psi_{0}(X)^{2} \right]}{\left(\mathbb{E}_{F} \psi_{0}'(X) \right)^{2}} = \frac{(1 - \epsilon) \mathbb{E}_{G} \left[\psi_{0}(X)^{2} \right] + \epsilon \mathbb{E}_{H} \left[\psi_{0}(X)^{2} \right]}{\left[(1 - \epsilon) \mathbb{E}_{G} \psi_{0}'(X) + \epsilon \mathbb{E}_{H} \psi_{0}'(X) \right]^{2}}$$

Then, reminding
$$\psi_0(x) := -\frac{f_0'(x)}{f_0(x)} = \min\left(\max\left(-\alpha, -\frac{g'(x)}{g(x)}\right), \alpha\right)$$

- $|\psi_0(x)| \leq \alpha$ and $\mathbb{E}_H \left[\psi_0(X)^2\right] \leq \alpha^2$
- $\psi_0' \geq 0$ since $\frac{\partial^2}{\partial t^2}[-\log g(t)] \geq 0$ by convexity of $-\log g$

Fact 5: for any
$$F$$
 with $\mathbb{E}_F(\psi_0) = 0$

$$V^2(\psi_0, F) \le V^2(\psi_0, F_0) = \frac{(1 - \epsilon)\mathbb{E}_G\left[\psi_0(X)^2\right] + \epsilon\alpha^2}{\left[(1 - \epsilon)\mathbb{E}_G\psi_0'(X)\right]^2}$$

Proof: fix H so

$$V^{2}(\psi_{0}, F) = \frac{\mathbb{E}_{F} \left[\psi_{0}(X)^{2} \right]}{\left(\mathbb{E}_{F} \psi_{0}'(X) \right)^{2}} = \frac{(1 - \epsilon) \mathbb{E}_{G} \left[\psi_{0}(X)^{2} \right] + \epsilon \mathbb{E}_{H} \left[\psi_{0}(X)^{2} \right]}{\left[(1 - \epsilon) \mathbb{E}_{G} \psi_{0}'(X) + \epsilon \mathbb{E}_{H} \psi_{0}'(X) \right]^{2}}$$

Then, reminding $\psi_0(x) := -\frac{f_0'(x)}{f_0(x)} = \min\left(\max\left(-\alpha, -\frac{g'(x)}{g(x)}\right), \alpha\right)$

- $|\psi_0(x)| \leq \alpha$ and $\mathbb{E}_H \left[\psi_0(X)^2 \right] \leq \alpha^2$
- $\psi_0' \geq 0$ since $\frac{\partial^2}{\partial t^2}[-\log g(t)] \geq 0$ by convexity of $-\log g$

Hence, $\mathbb{E}_H \psi_0'(X) \geq 0$ for any H, and

$$V^{2}(\psi_{0}, F) \leq \frac{(1 - \epsilon)\mathbb{E}_{G} \left[\psi_{0}(X)^{2}\right] + \epsilon \alpha^{2}}{\left[(1 - \epsilon)\mathbb{E}_{G} \psi_{0}'(X)\right]^{2}}$$

Complements on Huber function

- ► More on variational formulations : Section 2.4, Hampel *et al.* (1986) after we introduce influence functions
- ► Connections with convex analysis and smoothing for non-smooth function, as in Nesterov (2005) Beck and Teboulle (2012), will be made later

References I

- Beck, A. and M. Teboulle. "Smoothing and first order methods: A unified framework". In: SIAM J. Optim. 22.2 (2012), pp. 557–580.
- Boyd, S. and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004, pp. xiv+716.
- Hampel, F. R. et al. Robust statistics: The Approach Based on Influence Functions. Wiley series in probability and statistics. Wiley, 1986.
- Huber, P. J. "Robust estimation of a location parameter". In: Ann. Math. Statist. 35 (1964), pp. 73–101.
- ► . Robust Statistics. John Wiley & Sons Inc., 1981.
- ► Koenker, R. and G. Bassett. "Regression quantiles". In: *Econometrica* 46.1 (1978), pp. 33–50.
- Maronna, R. A., R. D. Martin, and V. J. Yohai. Robust statistics: Theory and methods. Chichester: John Wiley & Sons, 2006.

References II

Nesterov, Y. "Smooth minimization of non-smooth functions". In: *Math. Program.* 103.1 (2005), pp. 127–152.