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Simplest location model1

xi = µ∗ + εi, for i = 1, . . . , n (1)

I µ∗ ∈ Rp is the true parameter
I x1, . . . , xn are n observations in Rp; and X = [x1, . . . , xn]
I ε1, . . . , εn model the noise variables (also in Rp) and are i.i.d.

random variable having the same c.d.f. F

Consequence: x1, . . . , xn are i.i.d. with c.d.f. G(·) = F (· − µ∗)

Rem: when F has a density, we write it f

1R. A. Maronna, R. D. Martin, and V. J. Yohai. Robust statistics: Theory and methods. Chichester: John
Wiley & Sons, 2006.
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Contamination/mixture model

Imagine a proportion of 1− α of the observations generated by a
“normal” model, and a proportion α generated from an unknown
c.d.f:

(1− α)F + αG

I F : models the “normal” observation, e.g., F is the c.d.f. of a
Gaussian distribution N (µ∗, σ2

∗ Idp)
I G : an arbitrary distribution (for instance a Gaussian with a

way larger variance)
I α: contamination ratio/parameter

Rem: similarly, when the distributions F and G have densities f
and g, the mixture density is (1− α)f + αg
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Maximum Likelihood Estimation (MLE)

Assuming model (1) such that f is the density (or p.d.f.) of F , the
likelihood function is:

L(x1, . . . , xn;µ) =
n∏
i=1

f(xi − µ)

The Maximum Likelihood Estimation (MLE) of µ is defined by:

µ̂MLE
n ∈ arg max

µ∈Rp
L(x1, . . . , xn;µ)

Rem: if F is known exactly, the MLE is “optimal” in the sense of
asymptotic normality, see Section (10.8), Maronna et al. (2006).

Double objective: find estimators almost optimal when the model
is not contaminated, but also almost optimal when it is.
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More on MLE

Instead of maximizing a product of function, (convex) optimization
would reformulated this equivalently as minimizing the (negative)
log-likelihood:

µ̂MLE
n ∈ arg min

µ∈Rp

1
n

n∑
i=1

ρ(xi − µ), where ρ = − log(f)

Rem: possibly additive / multiplicative constants can be removed

Differentiable case: If ρ is differentiable, then first order conditions
(or Fermat’s rule) ensure that:

0 = 1
n

n∑
i=1

ψ(xi − µ̂n), where ψ = ρ′.
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Examples (p = 1)

Distribution f(x) ρ(x) ψ(x) µ̂n

Gaussian 1√
2π

exp
(
−x2

2

) x2

2 x x̄n

Laplace 1
2 exp(−|x|) |x| × Medn(X)
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M-estimators for location parameter

Definition
We call M-estimator associated to a function ρ any estimator
obtained as follows:

µ̂n(ρ) ∈ arg min
µ∈Rp

1
n

n∑
i=1

ρ(xi − µ), where ρ is not necessarily − log(f)

Differentiable case: If ρ is differentiable, then first order conditions
(or Fermat’s rule)

0 =
n∑
i=1

ψ(xi − µ̂n), where ψ = ρ′.
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“Pinball loss” / quantile regression

ρ = `α where `α(x) =
{
−(1− α)x if x ≤ 0
αx if x ≥ 0

= α|x|1{x≥0} + (1− α)|x|1{x≤0}

Rem: we will discuss some more the case of non-differentiable but
convex functions, sub-differentials, etc.
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Distribution of M-estimators

Define µ̆ ∈ Rp as the theoretical counter part of the M-estimators:
for X ∼ F , it is defined by

µ̆ := µ̆(F, ρ) ∈ arg min
µ∈Rp

EF
(
ρ(X − µ)

)
whereas µ̂n := µ̂n(ρ) ∈ arg min

µ∈Rp

1
n

n∑
i=1

ρ(xi − µ)

Rem:
I µ̂n(ρ) = µ̆(F̂n, ρ) where F̂n is the empirical distribution based

on the sample x1, . . . , xn.
I In the MLE case : µ̂MLE

n = µ̆(F̂n,− log(f)) where f is the
p.d.f.

I µ̆ and µ̂n are translation equivariant
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Example in 1D

I when ρ(x) = x2

2 then µ̆(F, ρ) = EF (X)

I when ρ(x) = |x| then µ̆(F, ρ) = MedF (X) where
M = MedF (X) satisfies F (M) = 1

2
I when ρ(x) = `α(x) := α|x|1{x≥0} + (1− α)|x|1{x≤0} then
µ̆(F, ρ) = F−1(α) = inf{x ∈ R : F (x) ≥ α} is2 the
α-quantile of the distribution F .

2R. Koenker and G. Bassett. “Regression quantiles”. In: Econometrica 46.1 (1978), pp. 33–50.
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Proof: assuming F has a density f

Goal: find µ̆ ∈ arg min
µ∈R

EF
(
`α(X − µ)

)
EF
(
`α(X − µ)

)
= EF (α|X − µ|1{X≥µ} + (1− α)|X − µ|1{X≤µ})

= α

∫ +∞

µ
(x− µ)f(x)dx− (1− α)

∫ µ

−∞
(x− µ)f(x)dx

Note that
∫+∞
µ (x− µ)f(x)dx =

∫+∞
µ xf(x)dx− µ(1− F (µ)), so

d

dµ

(∫ +∞

µ
(x− µ)f(x)dx

)
= lim
x→+∞

xf(x)− µf(µ)− (1− F (µ)) + µf(µ)

=− (1− F (µ))

Similarly, d
dµ

(∫ µ
−∞(x− µ)f(x)dx

)
= F (µ) so the first order

conditions of the associated minimization problem yield

0 =− α(1− F (µ̆)) + (1− α)F (µ̆) ⇐⇒ α = F (µ̆) ⇐⇒ µ̆ = F−1(α)
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The Huber function

ρα :=
{
x2

2α if |x| ≤ α
|x| − α

2 if |x| > α
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| · |
ρα, α = 3.5

ψα :
{
x
α if |x| ≤ α
sign(x) if |x| > α

−4 −2 0 2 4

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
ψα, α = 3.5
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The Bisquare function

ρα :
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Smoothness assumptions

For this section, we consider only the case where ρ is differentiable
where ψ = ρ′, and ψ′′ is bounded. Assume also X ∼ F , and
x1, . . . , xn are i.i.d. with the same distribution F .

Theorem
Under the previous smoothness assumption and provided ψ is
non-decreasing
√
n(µ̂n − µ̆)→d N (0, V 2),where V 2 = EF

(
ψ(X − µ̆)2)

(EFψ′(X − µ̆))2

is called the asymptotic variance of µ̂n

Example : In the case ρ(x) = x2/2, one recovers the CLT as
V 2 = Var(X)

Rem: since µ̆ is translation equivariant, in the translation model
xi = µ∗ + εi then V 2 = is independent of µ∗
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Proof continued
By definition of µ̆ and µ̂n

EFψ(X − µ̆) = 0 and 1
n

n∑
i=1

ψ(xi − µ̂n) = 0

Then the function λ̆ and λ̂n defined for any s ∈ R

λ̆(s) = EFψ(X − s) and λ̂n(s) = 1
n

n∑
i=1

ψ(xi − s)

are non-increasing, λ̆(µ̆) = λ̂n(µ̂n) = 0 and lim
n→∞

λ̂n(s) = λ̆(s).

Fact 1: µ̂n
p→ µ̆

Proof: fix ε > 0: since λ̂n is non-increasing
P({µ̂n < µ̆−ε}) ≤ P({λ̂n(µ̂n) > λ̂n(µ̆−ε)}) = P({0 > λ̂n(µ̆−ε)})
Now remind that with the law of large number:

lim
n→∞

λ̂n(µ̆− ε) = λ̆(µ̆− ε) > 0, so lim
n→∞

P({0 > λ̂n(µ̆− ε)}) = 0.
Hence, lim

n→∞
P({µ̂n < µ̆− ε}) = 0 and similarly one can show that

lim
n→∞

P({µ̂n > µ̆+ ε}) = 0
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n

n∑
i=1

ψ(xi − s)
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n→∞

λ̂n(s) = λ̆(s).
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Proof (end)
By a Taylor expansion (Lagrange form) there exists µ̃ such :

1
n

n∑
i=1

ψ(xi − µ̂n) = 1
n

n∑
i=1

ψ(xi − µ̆) + (µ̆− µ̂n) · 1
n

n∑
i=1

ψ′(xi − µ̆)

+ 1
2n(µ̆− µ̂n)2

n∑
i=1

ψ′′(xi − µ̃)

Hence:
√
n(µ̂n − µ̆) = −

√
n
(

1
n

∑n
i=1 ψ(xi − µ̆)

)
1
n

n∑
i=1

ψ′(xi − µ̆) + (µ̂n − µ̆) 1
2n

n∑
i=1

ψ′′(xi − µ̃)

Provided ψ′′ is bounded, the numerator converges to
EFψ′(X − µ̆). Hence, with Slutsky’s lemma and the CLT,

√
n(µ̂n − µ̆)→d N (0, V 2),where V 2 = EF

(
ψ(X − µ̆)2)

(EFψ′(X − µ̆))2
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Intuitive view on M-estimators

Assume for simplicity that ψ(0) = 0 and that ψ′(0) exists, then
one can defined

W (x) =
{
ψ(x)
x if x 6= 0

ψ′(0) if x = 0

and then
0 = 1

n

n∑
i=1

ψ(xi − µ̂n) ⇐⇒ 0 =
n∑
i=1

W (xi − µ̂n)(xi − µ̂n)

⇐⇒ µ̂n =
∑n
i=1W (xi − µ̂n)xi∑n
i′=1W (xi′ − µ̂n)

Interpretation: this is a weighted average with weights (often)
decaying when xi − µ̂n is large (i.e., for outlying observations)
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(Normalized) Weights examples

I Mean case: W (x) = 1 all data points are weighted equally
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(Normalized) Weights examples

I Huber case:

ρα =
{
x2

2α if |x| ≤ α
|x| − α

2 if |x| > α
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(Normalized) Weights examples

I Bi-square case:

ρα =
{

1− [1− ( xα)2]3 if |x| ≤ α
1 if |x| > α
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Another interpretation

µ̂n = µ̂n + 1
n

n∑
i=1

ψ(xi − µ̂n) = 1
n

n∑
i=1

ζ(xi, µ̂n)

where ζ(x, µ) = µ+ ψ(x− µ)

Example : for the Huber case ζ(x, µ) = µ+ αψα(x− µ) where

ψα(x) :
{
x
α if |x| ≤ α
sign(x) if |x| > α

so

ζ(x, µ) := Π[µ−α,µ+α](x) =


µ− α if x < µ− α
x if µ− α ≤ x ≤ µ+ α

µ+ α if x > µ+ α

Rem: this is connected to “Windsorizing”
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Huber and “Windsorizing” p.79, Huber (1964)

Let µ̂n(X) the M-estimator for the Huber function:∑n
i=1 ψα(xi − µ̂n(X)) = 0 where ψα(x) :

{
x
α if |x| ≤ α
sign(x) if |x| > α

Then:
0 =

∑
i:|xi−µ̂n(X)|≤α

α(xi − µ̂n(X)) +
∑

i:xi>µ̂n(X)+α
α+

∑
i:xi<µ̂n(X)−α

−α

0 =
∑

i:|xi−µ̂n(X)|≤α
α(xi − µ̂n(X)) +

∑
i:xi>µ̂n(X)+α

α+ µ̂n(X)− µ̂n(X)

+
∑

i:xi<µ̂n(X)−α
−α− µ̂n(X) + µ̂n(X)

Interpretation: µ̂n(X) is the empirical mean of the modified

dataset X̃ where x̃i =


µ̂n(X)− α if xi < µ̂n(X)− α
xi if |xi − µ̂n(X)| ≤ α
µ̂n(X) + α if xi < µ̂n(X) + α

24 / 54



Huber and “Windsorizing” p.79, Huber (1964)

Let µ̂n(X) the M-estimator for the Huber function:∑n
i=1 ψα(xi − µ̂n(X)) = 0 where ψα(x) :

{
x
α if |x| ≤ α
sign(x) if |x| > α

Then:
0 =

∑
i:|xi−µ̂n(X)|≤α

α(xi − µ̂n(X)) +
∑

i:xi>µ̂n(X)+α
α+

∑
i:xi<µ̂n(X)−α

−α

0 =
∑

i:|xi−µ̂n(X)|≤α
α(xi − µ̂n(X)) +

∑
i:xi>µ̂n(X)+α

α+ µ̂n(X)− µ̂n(X)

+
∑

i:xi<µ̂n(X)−α
−α− µ̂n(X) + µ̂n(X)

Interpretation: µ̂n(X) is the empirical mean of the modified

dataset X̃ where x̃i =


µ̂n(X)− α if xi < µ̂n(X)− α
xi if |xi − µ̂n(X)| ≤ α
µ̂n(X) + α if xi < µ̂n(X) + α

24 / 54



Huber and “Windsorizing” p.79, Huber (1964)

Let µ̂n(X) the M-estimator for the Huber function:∑n
i=1 ψα(xi − µ̂n(X)) = 0 where ψα(x) :

{
x
α if |x| ≤ α
sign(x) if |x| > α

Then:
0 =

∑
i:|xi−µ̂n(X)|≤α

α(xi − µ̂n(X)) +
∑

i:xi>µ̂n(X)+α
α+

∑
i:xi<µ̂n(X)−α

−α

0 =
∑

i:|xi−µ̂n(X)|≤α
α(xi − µ̂n(X)) +

∑
i:xi>µ̂n(X)+α

α+ µ̂n(X)− µ̂n(X)

+
∑

i:xi<µ̂n(X)−α
−α− µ̂n(X) + µ̂n(X)

Interpretation: µ̂n(X) is the empirical mean of the modified

dataset X̃ where x̃i =


µ̂n(X)− α if xi < µ̂n(X)− α
xi if |xi − µ̂n(X)| ≤ α
µ̂n(X) + α if xi < µ̂n(X) + α

24 / 54



Huber and “Windsorizing” p.79, Huber (1964)

Let µ̂n(X) the M-estimator for the Huber function:∑n
i=1 ψα(xi − µ̂n(X)) = 0 where ψα(x) :

{
x
α if |x| ≤ α
sign(x) if |x| > α

Then:
0 =

∑
i:|xi−µ̂n(X)|≤α

α(xi − µ̂n(X)) +
∑

i:xi>µ̂n(X)+α
α+

∑
i:xi<µ̂n(X)−α

−α

0 =
∑

i:|xi−µ̂n(X)|≤α
α(xi − µ̂n(X)) +

∑
i:xi>µ̂n(X)+α

α+ µ̂n(X)− µ̂n(X)

+
∑

i:xi<µ̂n(X)−α
−α− µ̂n(X) + µ̂n(X)

Interpretation: µ̂n(X) is the empirical mean of the modified

dataset X̃ where x̃i =


µ̂n(X)− α if xi < µ̂n(X)− α
xi if |xi − µ̂n(X)| ≤ α
µ̂n(X) + α if xi < µ̂n(X) + α

24 / 54



Computational difficulties

I some methods are convex and smooth (ρ(x) = x2/2, Huber)
I some methods are convex but non-smooth (pinball,
ρ(x) = |x|, etc.)

I some methods are non-convex but smooth (bi-square)

Numerical “recipes” will be investigated later on.
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Simplest dispersion model

xi = σ∗εi, for i = 1, . . . , n (2)

I σ∗ ∈ R++ is the (true) scale parameter
I x1, . . . , xn are n observations in Rp; and X = [x1, . . . , xn]
I ε1, . . . , εn and are i.i.d. random variable having the same

c.d.f. F and density f

Consequence: x1, . . . , xn are i.i.d. with density 1
σf( ·σ )
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MLE for scale estimation
Assuming model (2) such that f is the density (or p.d.f.) of F , the
likelihood function is:

L(x1, . . . , xn;σ) = 1
σn

n∏
i=1

f

(
xi
σ

)
The Maximum Likelihood Estimation (MLE) of σ is defined by:

σ̂MLE
n ∈ arg max

σ∈R++

L(x1, . . . , xn;σ)

Transforming using − log then

σ̂MLE
n ∈ arg min

σ∈R++

1
n

log(σ)−
n∑
i=1

log
(
f

(
xi
σ

))
For smooth function f (i.e., when f ′ exist) σ̂MLE

n satisfies:

1
n

n∑
i=1

ν

(
xi

σ̂MLE
n

)
= 1, where ν(x) = −x · f

′(x)
f(x)
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Example

Distribution f(x) ν(x) σ̂MLE
n

Gaussian 1√
2π

exp
(
−x2

2

)
x2

√√√√ 1
n

n∑
i=1

x2
i

Laplace 1
2 exp(−|x|) |x| 1

n

n∑
i=1
|xi|
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M-estimators of scale

Definition
We call M-estimator of scale associated to a function ν any
estimator σ̂n obtained solving the following equation w.r.t. σ:

1
n

n∑
i=1

ν

(
xi
σ

)
= 1

I when ∀i ∈ [n], xi = 0, it is natural to set σ̂(0, . . . , 0) = 0
I σ̂ is then scale equivariant
σ̂n(αx1, . . . , αxn) = ασ̂n(x1, . . . , xn)

I when n is even and ν = 21[−1,1]c , then
σ̂n = Medn(|x1|, . . . , |xn|).
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Intuitive view on M-estimators

Assume for simplicity that ν ′(0) = 0 and that ν ′′(0) > 0, then one
can defined

W (x) =
{
ν(x)
x2 if x 6= 0
ν ′′(0) if x = 0

and then
σ̂2
n = 1

n

n∑
i=1

W

(
xi
σ̂n

)
x2
i

Interpretation: this is a weighted average, with weights (often)
decaying when xi

σ̂n
is large (i.e., for outlying observations)
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Classical weights

I square case ρ(x) = x2, W (x) = 1
I Bi-square case (α = 1)

ρ(x) :
{

1− [1− ( xα)2]3 if |x| ≤ α
1 if |x| > α

−4 −2 0 2 4
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W (x) = min
(
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1
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Location/dispersion model

xi = µ∗ + σ∗εi, for i = 1, . . . , n (3)

I µ∗ ∈ Rp is the true parameter
I x1, . . . , xn are n observations in Rp; and X = [x1, . . . , xn]
I ε1, . . . , εn model the noise variables (also in Rp) and are i.i.d.

random variable having the same density f

Consequence: x1, . . . , xn are i.i.d. with p.d.f. 1
σ∗
f
(
·−µ∗
σ∗

)
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Simultaneous MLE

Assuming model (1) such that f is the density (or p.d.f.) of F , the
simultaneous MLE estimators of location and scale are:

(µ̂MLE
n , σ̂MLE

n ) ∈ arg max
(µ,σ)∈Rp×R++

[
1
σn

n∏
i=1

f

(
xi − µ
σ

)]

or equivalently:

(µ̂MLE
n , σ̂MLE

n ) ∈ arg min
(µ,σ)∈Rp×R++

[
1
n

n∑
i=1

ρ

(
xi − µ
σ

)
+ log σ

]

where ρ = − log(f).
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Simultaneous M-estimators

Simultaneous M-estimators of location and estimation are µ̂ and σ̂
satisfying for functions ψ = ρ′ and ν the following system of
equation: 

1
n

n∑
i=1

ψ

(
xi − µ̂n
σ̂n

)
= 0

1
n

n∑
i=1

ν

(
xi − µ̂n
σ̂n

)
= 1

Rem: in the MLE case ψ(x) = −f ′(x)
f(x) and ν(x) = −x·f ′(x)

f(x)

38 / 54



Computational difficulties

Note that even if ρ is a convex function the function
σ → ρ(z/σ) + log(σ) is often non-convex

Several ways can be used to alleviate that:
I Change of variable: γ = 1

σ

I Concomitant estimation, see Section 7.7, Huber (1981):

Substitute arg min
(µ,σ)∈Rp×R++

[
1
n

n∑
i=1

ρ

(
xi − µ
σ

)
+ log σ

]

by arg min
(µ,σ)∈Rp×R++

[
1
n

n∑
i=1

σ · ρ
(
xi − µ
σ

)]

Rem: (µ, σ)→ σ · ρ
(
x−µ
σ

)
is jointly convex as it is the

perspective function of ρ(x− ·), see for instance Section 3.2.6,
Boyd and Vandenberghe (2004)
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Asymptotic for M-estimation

Assume from now on that µ̆ = 0 and that X ∼ F . Then,
√
nµ̂n →d N (0, V 2(ψ, F )), where V 2(ψ, F ) = EF

(
ψ(X)2)

(EFψ′(X))2

Theorem

V 2(ψ, F ) ≥ 1

EF

[(
f ′(X)
f(X)

)2] , with equality when ψ ∝ −f
′

f

Rem: equality holds when one choses ψ (or ρ) associated to the
MLE, leading to the best asymptotic performance. Though, one
needs to know the distribution of F to consider ρ = − log(f)
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Sketch of proof
First, note that by integration by part:

− EF
(
ψ′(X)

)
= −

∫
ψ′(t)f(t)dt =

∫
ψ(t)f ′(t)dt

=
∫
ψ(t)f

′(t)
f(t) f(t)dt = EF

(
ψ(X)f

′(X)
f(X)

)
Using Cauchy-Schwartz inequality:[
EF

(
ψ(X)f

′(X)
f(X)

)]2
=
(∫

ψ(t)f
′(t)
f(t) f(t)dt

)2

≤
(∫

ψ2(t)f(t)dt
)(∫ (

f ′(t)
f(t)

)2
f(t)dt

)

= EF
(
ψ2(X)

)
EF

[(
f ′(X)
f(X)

)2]

Hence, EF

[(
f ′(X)
f(X)

)2]
≥ (EFψ

′(X))2

EF (ψ(X)2)
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Minimax / Game theory point of view3

I Players: Practitioner vs. (adversarial) Nature
I Known parameters: G and ε ∈ [0, 1[ are known (to both

nature and practitioner) and samples are drawn according to
Fε := F = (1− ε)G+ εH with a corruption level ε, i.e.,
fε := f = (1− ε)g + εh, where − log(g) is convex; i.e., g is
log-concave

I Objective: the player aims at minimizing the asymptotic
variance V 2(ψ, F )

I Practitioner’s action: picks ψ for “optimal” M-estimation
I Nature’s action: picks the distribution H that harms the

asymptotic variance the most

3P. J. Huber. “Robust estimation of a location parameter”. In: Ann. Math. Statist. 35 (1964), pp. 73–101.
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Equilibrium
Theorem

There exists F0 = (1− ε)G+ εH0 and ψ0 s.t.

∀F s.t. EF (ψ0) = 0, V 2(ψ0, F ) ≤ V 2(ψ0, F0) ≤ V 2(ψ, F0)

Let [t0, t1] be the largest interval such that |g′/g| ≤ α and let

(1− ε)−1 =
∫ t1

t0
g(t)dt+ g(t0) + g(t1)

α

f0(t) =


(1− ε)g(t0)eα(t−t0) if t ≤ t0
(1− ε)g(t) if t0 < t < t1

(1− ε)g(t1)e−α(t−t1) if t ≥ t1

and ψ0 = −f ′0/f0 is monotone and bounded by α.

Rem: V 2(ψ0, F0) ≤ V 2(ψ, F0) was proved earlier noticing that the
best choice is ψ = ψ0 := −f ′0/f0
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Huber loss as an equilibrium

Corollary

Assume that g(x) = 1√
2π exp(−x2

2 ). Then the equilibrium is
reached for F0 = (1− ε)G+ εH0 and ψ0 s.t.

(1− ε)−1 =
∫ α

−α
g(t)dt+ g(−α) + g(α)

α

f0(t) =


(1− ε)g(−α)eα(t+α) if t ≤ −α
(1− ε)g(t) if − α < t < α

(1− ε)g(α)e−α(t−α) if t ≥ α

Rem: ψ0(x) := −f ′0(x)/f0(x) = min(max(−α, x), α) is, up to
re-scaling, the Huber ψα function introduced earlier
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Worst adversarial distribution : Gaussian case

f0(t) ∝ exp(−ρα(t))
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Proof of theorem

1
1− ε =

∫ t1

t0
g(t)dt+ g(t0) + g(t1)

α

f0(t) =


(1− ε)g(t0)eα(t−t0) if t ≤ t0
(1− ε)g(t) if t0 < t < t1

(1− ε)g(t1)e−α(t−t1) if t ≥ t1

Fact 1: f0 is a p.d.f.

Proof:
I f is non-negative since g is non-negative
I
∫
f0(t)dt = 1 since ε is constructed for that
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Proof continued
Fact 2: h0 := 1

ε [f0 − (1− ε)g] defined below is a p.d.f.

h0(t) :=


1−ε
ε [g(t0)eα(t−t0) − g(t)] if t ≤ t0

0 if t0 < t < t1
1−ε
ε [g(t1)e−α(t−t1) − g(t)] if t ≥ t1

Proof:
∫
h0 = 1

ε

∫
[f0 − (1− ε)g] = 1 since

∫
f0 =

∫
g = 1.

Now − log(g) is convex so this function is lower bounded by its
tangent at t0, and for any t ≤ t0

− log(g)(t) ≥− log(g)(t0) + ∂

∂t
[− log g(t0)](t− t0)

≥− log(g)(t0)− α(t− t0)

where we have used ∂
∂t [− log g(t0)] = −g′(t0)/g(t0) ≥ −α. Hence

h0(t) ≥ 0 when t ≤ t0; similarly h0(t) ≥ 0 when t ≥ t1.
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Proof (continued II)
Fact 4:

V 2(ψ0, F0) = (1− ε)EG
[
ψ0(X)2]+ εα2

[(1− ε)EGψ′0(X)]2

Proof:

V 2(ψ0, F0) = EF0

[
ψ0(X)2]

(EF0ψ
′
0(X))2 = (1− ε)EG

[
ψ0(X)2]+ εEH0

[
ψ0(X)2]

[(1− ε)EGψ′0(X) + εEH0ψ
′
0(X)]2

Then, reminding ψ0(x) := −f ′0(x)
f0(x) = min

(
max

(
−α,−g′(x)

g(x)

)
, α
)

I |ψ0(t)| = α and ψ′0(t) = 0 for t /∈ [t0, t1]
I h0(t) = 0 for t ∈ [t0, t1]

Hence, EH0

[
ψ0(X)2] = α2 and EH0ψ

′
0(X) = 0, and

V 2(ψ0, F0) ≤ (1− ε)EG
[
ψ0(X)2]+ εα2

[(1− ε)EGψ′0(X)]2
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Complements on Huber function

I More on variational formulations : Section 2.4, Hampel et al.
(1986) after we introduce influence functions

I Connections with convex analysis and smoothing for
non-smooth function, as in Nesterov (2005) Beck and
Teboulle (2012), will be made later
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