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ABSTRACT

Patch based denoising methods, such as the NL-Means, have
emerged recently as simple and efficient denoising methods.
This paper provides a new insight on those methods by show-
ing their connection with recent statistical aggregation tech-
niques. Within this aggregation framework, we propose some
novel patch based denoising methods. We provide some the-
oretical justification and then explain how to implement them
with a Monte Carlo based algorithm.

Index Terms— Diffusion processes, Statistics, Monte
Carlo methods, Gaussian noise, Image processing

1. INTRODUCTION

Non local patch based denoising methods, such as the NL-
Means of Buades, Coll and Morel [1] and its variants [2], give
some of the best results to date. Those efficient methods are
based on a simple idea: look at the image as a collection of
small subimages, the ”patches”, and estimate each patch as
a weighted average of patches. The weights should take into
account their similarities and are often chosen proportional
to the exponential of the quadratic error between the patches.
Those methods, and their graph variations, are often seen as a
kind of smoothing on a patch manifold. However, this mani-
fold point of view does not permit to explain mathematically
their performance.

We propose to tackle this challenge through a very dif-
ferent angle, the angle of statistical aggregation. In statisti-
cal aggregation, one consider a collection of pre-estimators
and a noisy observation, and look for an “aggregation” proce-
dure that build a weighted average of the pre-estimators that
should be as close as possible to the unknown original signal.
Juditsky et al. [3] and Dalalyan and Tsybakov [4, 5] propose
some aggregation rules for which they control the theoreti-
cal performance. Interestingly, choosing the patches as pre-
estimators leads to a a special case of recent PAC-Bayesian
methods which coincides almost exactly with the NL-Means.

In this paper, we describe how this aggregation frame-
work applies to patch based estimators and how one can ob-
tain novel patch based method.

2. IMAGE, PATCHES AND KERNELS

Let I = I(i, j), with 1 ≤ i ≤ N and 1 ≤ j ≤ N , be an image
with N2 pixels. Assume we observe only a noisy version Y
obtained with an additive random error W :

Y (i, j) = I(i, j) + σW (i, j) .

We assume that W (i, j) are i.i.d standard normal distributions
and the variance σ2 is supposed to be known.

Let S be an odd integer, we define the patch P (I)(i, j) as
the subimage of I of size S × S centered on (i, j):

P (I)(i, j)(k, l) = I

(
i + k − S − 1

2
, j + l − S − 1

2

)
.

In patch based methods, one is interested by estimates of
the patches P (I)(i0, j0) obtained from the collection of noisy
patches P (Y )(i, j). More precisely, we consider weighted
estimators

Pλ(Y )(i0, j0) =
∑

1≤i≤N,1≤j≤N

λ(i0,j0)(i,j)(Y )P (Y )(i, j) ,

where the weights λ(i0,j0)(i,j)(Y ) should not depend on the
unobserved I .

(a) Patches to consider (b) Associated kernel

Fig. 1. (a) House image with some patches used to denoise
the blue central patch (the lighter the closer ). (b) Associated
local kernel showing geometrical structure.



Those weights should be chosen in such a way that this
average is close to the true patch P (I), as illustrated in Fig.1.
The most classical choice is the one where those weights de-
pend only on the relative position of (i0, j0) and (i, j). This
case is nothing but a kernel method in which a fixed kernel is
chosen and used to uniformly smooth the noisy image. Often,
a single kernel is not adapted to the whole image and several
methods propose to change locally this kernel according to
the observation itself.

A simple and very efficient way has been proposed by
Buades, Coll and Morel [1]: just replace the dependency on
the position by a dependency on the distance between the cor-
responding patches and renormalize the weights so that they
sum to 1. Indeed, the weights they proposed are defined as

λ(i0,j0)(i,j)(Y ) =
e−

1
β ‖P (Y )(i0,j0)−P (Y )(i,j)‖2

∑
i′,j′ e

− 1
β ‖P (Y )(i0,j0)−P (Y )(i′,j′)‖2 ,

where ‖ · ‖ denotes the usual l2 norm and β is an important
tuning parameter. This method can be seen as an extension of
the bilateral filter [6] where the pixels difference based kernel
is replaced by patches difference based kernel. The weights
can accordingly vary, for example to take into account the
relative spatial position of the patches. Note that, as observed
by Boulanger and Kervrann [2], it is important to restrict the
patch averaging to a neighborhood of (i, j) for both speed and
performance reasons. In the following, we will assume that
the weights are zero as soon as ‖(i, j)− (i0, j0)‖∞ >

√
m−1
2 ,

so that we only combine m patches.

3. AGGREGATION AND PAC-BAYESIAN
APPROACH

The aggregation framework is very similar. One also has a
noisy observation Y of size n of a signal I:

Y (i) = I(i) + σW (i) ,

where W (i) are standard i.i.d. gaussian variables. σ is known
and one has a collection of m pre-estimators P1, . . . ,Pm. In
this context, we look for an estimate of I with the following
form

Pλ =
m∑

k=1

λkPk ,

where λ belongs to Rm. The aggregation theory deals with
the choice of a data dependent λ that leads to a theoretical
control on the estimation error.

In the PAC-Bayesian approach, for any probability mea-
sure π, called the prior, on the parameter λ, one defined the
exponential weight aggregate Îπ by

Îπ =

∫
Rm Iλ exp−

1
β ‖Y−Pλ‖2 dπ(λ)

∫
Rm exp−

1
β ‖Y−Pλ‖2 dπ(λ)

,

where ‖ · ‖ is the standard `2 norm. This estimator can be
interpreted in the Bayesian framework as the posterior mean

in a phantom model Z = I +
√

β
2 Wg where Wg is a standard

gaussian white noise. This estimate can also be recast through
its coordinates: straightforward computation show that Îπ =
Iλ̂π

with

λ̂π =

∫
Rm λ exp−

1
β ‖Y−Pλ‖2 dπ(λ)

∫
Rm exp−

1
β ‖Y−Pλ‖2 dπ(λ)

.

The key result is that this estimator satisfies an “oracle”
inequality whenever the pre-estimators Pk are independent of
Y and β large enough. Let P be the set of all probability dis-
tributions on Rm. For any π ∈ P and any β ≥ 4σ2, Dalalyan
and Tsybakov [4] prove that

E
[
‖I − Îπ‖2

]
≤ inf

p∈P

(∫

Rm

‖I − Pλ‖2dp(λ) + βK(p, π)
)

,

where K(p, π) is the Kullback divergence between p and π:

K(p, π) =

{ ∫
Rm log

(
dp
dπ (λ)

)
p(dλ) if p ¿ π,

+∞ otherwise.

The first term in the above inequality is an approximation
term. It relates the risk to a deterministic quantity, close
to the risk of the best possible approximation in the family
(Pλ)λ∈Rm . The second term is the price to pay for adaptivity,
the fact that you do not know in advance the best probability
distribution p, the one that makes the risk small.

4. PAC-BAYESIAN AND NL-MEANS

NL-Means and its variants with exponential weights for the
patches can be seen as a special case of PAC-Bayesian estima-
tion. Indeed, it suffices to use P (Y ) as the observation and to
choose the pre-estimators Pk as the noisy patches P (Y )(i, j)
to obtain, for any prior π, an estimator of the following form

Pλ̂π
(Y ) =

∑

1≤i≤N,1≤j≤N

λ̂π,(i,j)(Y )P (Y )(i, j) ,

where λ̂π =

∫
Rm λ exp−

1
β ‖P (Y )−Pλ(Y )‖2 dπ(λ)

∫
Rm exp−

1
β ‖P (Y )−Pλ(Y )‖2 dπ(λ)

.

When π is chosen as the uniform discrete probability on
the noisy patches, one obtains the simple formula

Îπ =

∑
i,j P (Y )(i, j) exp−

1
β ‖P (Y )−P (Y )(i,j)‖2

∑
i,j exp−

1
β ‖P (Y )−P (Y )(i,j)‖2 ,

that is the classical NL-Means estimator.
The theoretical results of the previous section have been

proved only when the pre-estimators are independent of the



observations, which is obviously not the case when they are
chosen as patches of the noisy image. However, numerical
experiments suggest that a similar result is valid. More pre-
cisely, we expect

E
ˆ‖P (I)− Pλ̂π

(Y )‖2˜ ≤

inf
p∈P

„Z

Rm

`‖P (I)− Pλ(I)‖2 + S2σ2‖λ‖2´dp(λ) + βK(p, π)

«
.

The supplementary term, S2σ2‖λ‖2, is exactly the variance
of the kernel estimator corresponding to the choice of weights
λ: the value in the integral is thus the expected error of a fixed
kernel smoothing estimator. This oracle inequality means that
the risk of the PAC-Bayesian estimator is controlled by the
average of the risk of any kernel estimator up to a penalty
which measures the distance between the averaging probabil-
ity p and the prior used. The point is that this is valid for ev-
ery p so one can mimic the best local kernel up to this penalty
term.

The choice of the prior π is crucial to control the error. A
good choice will be one such that for any patch P (I) there
is a probability p which makes the left-hand side of the error
bound small. An ideal one is one for which the attained mini-
mum is close to the minimum without the complexity penalty.
It is impossible to reach in general but possible if one restricts
the choice of p and π within a certain class, so that we can
control the sum of the two terms.

The simple uniform prior corresponding to the NL-Means
is not yet handled efficiently by these analysis. Indeed, the
previous inequality gives

E‖P (I)− Pλ̂π
(Y )‖2 ≤ Sσ2 + β log(m) ,

meaning that one does better than nothing up to a logarithmic
factor.

A much more interesting results has been obtained by
Dalalyan and Tsybakov [4] with a 3-Student law as a prior
π, ie. π(dλ) ∝ (τ2 + λ2

j )
−2dλ. They obtain a sparse or-

acle inequality showing that if the best kernel has only few
non zero elements then the PAC-Bayesian estimate behaves
almost as well as this best kernel.

The question of a better prior choice remains open as we
want to have simultaneously a theoretical control, an efficient
estimator and an efficient algorithm.

5. PAC BAYESIAN ESTIMATORS AND MONTE
CARLO METHOD

Computing efficiently the proposed estimator is indeed a chal-
lenging task. Recall that our estimate has the form Pλ̂π

(Y )
with

λ̂π =

∫
Rm λ exp−

1
β ‖P (Y )−Pλ(Y )‖2 dπ(λ)

∫
Rm exp−

1
β ‖P (Y )−Pλ(Y )‖2 dπ(λ)

.

Thus, the challenge is in computing such a multi dimensional
integral. This “posterior” computation appears quite often in
Bayesian approach and a huge literature already exists on the
subject (see [7] for instance).

Most approaches are based on the Monte-Carlo Markov
Chain (MCMC) machinery which yields efficient approxima-
tion scheme for this type of integrals. We focus here on a
method based on diffusion techniques called Langevin Walk
Monte Carlo. Note that as in most MCMC method, we only
need to know the distribution up to a multiplicative constant,
so we do not need to compute the normalization constant ap-
pearing in the previous formulae.

The key observation on the Langevin Walk Monte Carlo
is that whenever the probability q has a density proportional
to exp(V (λ)) where V is a continuous function, there is a
simple diffusion process for which q is the stationary law. In-
deed, stochastic integral theory shows that the solution of the
Langevin diffusion equation

dΛt = ∇V (Λt)dt +
√

2 dWt Λ0 = λ0, t ≥ 0 ,

where λ0 is a fixed vector in Rm and Wt is a m-dimensional
Brownian motion, is such that, under mild assumptions on V ,
any trajectory Λt is stationary with a stationary distribution
equal to q. The expectation of any function of λ with respect
to q can thus be obtained as the average of this function along
the trajectory Λt.

With the choice V (λ) = −β−1‖P (Y ) − Pλ(Y )‖2 −
log (π(λ)), we obtain

λ̂π = lim
T→+∞

1
T

∫ T

0

Λtdt,

where Λt is any trajectory solution of the Langevin diffusion.
We approximate this integral by discretizing it with step h
and computing an approximate diffusion ΛE

kh with an Euler
scheme. We let ΛE

0 = 0 and compute recursively the approx-
imate solution ΛE

hk for k = 1, . . . , [T/h]− 1:

ΛE
(k+1)h = ΛE

kh + h∇V (ΛE
kh) +

√
2hWk,

with W1,W2, . . . i.i.d standard gaussian random vectors in
Rm. The estimated coefficients λ̂π are then replaced by the
approximation λ̃π ,

λ̃π =
h

T

[T/h]−1∑

k=0

ΛE
hk .

For a small enough h, both theory [8] and numerical experi-
ments ensure the closeness with the true value.

Note that the we can also use the Langevin diffusion to
define the drift of a Metropolis Walk Monte Carlo chain. This
corresponds to a small correction in the recursion of the pre-
vious discrete approximation which ensures the convergence
but slows down the algorithm.



6. NUMERICAL RESULTS

We implemented the proposed approach in Matlab, focusing
on two priors: the uniform discrete prior corresponding to the
NL-Means (with β = 12σ2 as recommanded in [1] ) and the
3-Student prior. We used square patches with length S = 5
and a search region of size m = 13 × 13 in all our exper-
iments. The choice β = 4σ2, recommended by the theory,
does not lead to the best results: the choice β = 2σ2 cor-
responding to a classical Bayesian approach leads to better
performances.

To better control the convergence of our procedure, we
used several chains instead of only one. We speed up the
process by eleminating from pre-estimators patches that are
too much different from the central patch.

The results are on par with the classical NL-Means proce-
dure as illustrated in Fig.2 with two classical images. One can
still see some kind of grain in images treated by our method,
what seems more comfortable for our eyes than too flat region
obtained with NL-Means. Moreover, we have observed that
in PAC-Bayesian aggregation, the same parameter set yields
good results for all our test images while the optimization is
important for the NL-Means.

We have describe a new denoising algorithm inspired by
the NL-Means procedure and we have proposed a new frame-
work to transfer statistical aggregation results into image pro-
cessing theorems. In the future, we plan to improve the al-
gorithm by exploring several other heavy tail priors such as
Gaussian mixture or Cauchy.
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(a) Noisy (PSNR=28.13) (b) Noisy (PSNR=22.12)

(c) NL-Means (PSNR=31.19) (d) NL-Means (PSNR=29.59)

(e) Our method (PSNR=32.79) (f) Our method (PSNR=29.46)

Fig. 2. (a) Barbara noisy σ = 10. (b) Peppers noisy σ = 20.
(c) and (d) Images denoised with the NL-Means. (e) and (f)
Images denoised with our method.


