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Sparsity of signals is all around

Signals can often be represented through a combination of a few
elements / atoms :

I Fourier decomposition for sounds

I Wavelet for images (1990’s)
I Dictionary learning for images (late 2000’s)
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Sparse linear model

Let y ∈ Rn be a signal, e.g., an
image

Let X = [x1, . . . ,xp] ∈ Rn×p be a
collection of (normalized) atoms:
corresponds to a dictionary

X well suited if one can
approximate the signal y ≈ Xβ
with a sparse vector β ∈ Rp

y


︸ ︷︷ ︸
y∈Rn

≈

 x1 . . . xp


︸ ︷︷ ︸

X∈Rn×p

·

β1
...
βp


︸ ︷︷ ︸
β∈Rp



The Lasso and its other names

Possible way to get a sparse vector when the dictionary is known:

β̂λ ∈ arg min
β∈Rp

( 1
2‖y −Xβ‖22︸ ︷︷ ︸
data fitting term

+ λ‖β‖1︸ ︷︷ ︸
sparsity-inducing penalty

)

Rem: Convex optimization problem, can be solved efficiently
Rem: Did I mention you have to tune/choose λ?

Vocabulary:
I Statistics: Lasso

Tibshirani (1996)
I Signal processing: Basis Pursuit

Chen, Donoho and Saunders (1998)



Dictionary learning: last motivation word

One typically observes T training signals y1, . . . yT .
start with an initial dictionary X0, then alternates over t ∈ [T ]:
β̂λt ∈ arg min

β∈Rp

1
2‖yt −Xt−1β‖22 + λ‖β‖1 (coefficients update)

Xt ∈ arg min
X∈N

1
2‖yt−1 −X β̂λt−1‖22 (dictionary update)

where N is a set of normalized dictionary in Rn×p,

Rem: Applied to signals being small patches of images this reaches
state-of-the-art on several image processing tasks cf. Mairal et
al. (2010)



Model considered afterwards

We consider a simple model for theory and simulation validation

y = Xβ∗ + ε

I additive white Gaussian noise ε ∼ N (0, σ2 In)
I X ∈ Rn×p has normalized columns e.g., ‖xj‖2 =

√
n for all

j = 1, . . . , p
I the true signal β∗ is sparse
I the prediction error E‖Xβ∗ −X β̂‖22/n as a measure of

performance for an estimator β̂

Rem: Note that p can be larger than n
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Orthonormal dictionary (n = p)
Orthonormal case: X>X = Idp or 〈xi |xj〉 = δi,j for all i, j

β̂λ = arg min
β∈Rp

(1
2‖y −Xβ‖22 + λ‖β‖1

)

Solution = Soft-Thresholding:

β̂λ =

ηST,λ(〈x1, y〉)
...

ηST,λ(〈xp, y〉)


where

ηST,λ(x) = sign(x) · (|x| − λ)+

Drawback: it shrinks large coefficients toward zero by a factor λ!



Debiasing the Lasso the easy way

β̂λLasso ∈ arg min
β∈Rp

(1
2‖y −Xβ‖22 + λ‖β‖1

)

Definition: active set
The active set or support of a vector β is the indexes of its
non-zero coordinates

supp[β] = {j ∈ [p] : βj 6= 0}

Rem: The Lasso is sparse means its active set supp[β̂λLasso] is small

Definition: LSLasso
The Least Square Lasso (LSLasso): performs a least square fitting
for the variables xj that are activated

β̂λLSLasso ∈ arg min
supp[β]= supp[β̂λLasso]

‖Y −Xβ‖22
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Tuning parameters
In practice, one computes r Lasso for λ1 > · · · > λr and searches:

I the best parameter for the LSLasso β̂λ∗
LSLasso

I the best parameter for the Lasso β̂λ∗
Lasso

Prediction error ‖Xβ∗ −X β̂‖22/n (here r = 20)
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K -fold Cross Validation (K = 10)

Divide (X , y) in K fold along the samples

Validation

Training

Final Step: average the prediction errors get Êrror1, . . . , Êrrorr
and choose îCV ∈ [r ] achieving the smallest error
Final Step (bis): compute β̂λi over the whole (X ,Y ) for i = îCV
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K -fold Cross Validation (K = 10)

Divide (X , y) in K fold along the samples

Validation

Training

k = 4
1. Compute over the training set

the estimators for
λ1 > · · · > λr , get β̂λ1 , . . . , β̂λr

2. Compute the prediction errors
using the validation set and get
Errork

1, . . . ,Errork
r

Final Step: average the prediction errors get Êrror1, . . . , Êrrorr
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K -fold Cross Validation (K = 10)

Divide (X , y) in K fold along the samples

Validation

Training

k = 6
1. Compute over the training set

the estimators for
λ1 > · · · > λr , get β̂λ1 , . . . , β̂λr

2. Compute the prediction errors
using the validation set and get
Errork

1, . . . ,Errork
r

Final Step: average the prediction errors get Êrror1, . . . , Êrrorr
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Drawbacks of K -fold Cross Validation

Say K = 10

Computational limits
Naive method:

I compute 10 times the estimator over datasets of size 90% of
the original one

I compute 1 time the estimator over 100% of the dataset

Theoretical limits
I basic results suppose estimators are (almost) “independent”
I little is known on the performance of cross-validated Lasso /

LSLasso type methods

cf. Arlot and Celisse (2010)
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Notation for defining a new validation method

Parameters: λ1 · · · λr

↓ · · · ↓
Lasso estimators: β̂λ1
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↓ · · · ↓
Active sets: Ŝ1 · · · Ŝr

↓ · · · ↓
LSLasso estimators: β̂λ1

LSLasso · · · β̂λr
LSLasso

For simplicity, denote:

I β
i = β̂λi

LSLasso (i.e., the least square estimator over the
variables in Ŝ i)

I β
i,j the least square estimator over the variable in Ŝ i ∪ Ŝ j

Rem: there are at most r2 such estimators; not all needed for our
purpose
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Adaptive Validation in Prediction (AVp)

Assume the active sets are ordered such that: |Ŝ1| ≤ . . . ≤ |Ŝr |

Definition AVp

Let a ≥ 0. The AVp is the estimator β := β
î with active set

Ŝ = Ŝ î , where

î := min
{

i ∈ [r − 1]
∣∣∣ ‖Xβi −Xβi,j‖22
|Ŝ i |+ |Ŝ i,j |

≤ a, ∀j ∈ [r ] : |Ŝ j | ≥ |Ŝ i |
}

when the minimum exists, and î = r otherwise.

I a is a tuning parameter, as was K for Cross-Validation (to be
discuss later)

I ‖Xβi −Xβi,j‖22 measures the variation in prediction obtained
by adding the variable from the set Ŝ j to Ŝ i
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Time efficiency



AVp: the algorithm

Data: Y ,X , Ŝ1, . . . , Ŝr , a
Result: î ∈ [r ], β ∈ Rp

Initialize index: i ← 1
while i ≤ r − 1 do

Initialize stopping TestFailure ← False and compute βi

Initialize comparisons: j ← min{k ∈ [i]| |Ŝk | ≥ |Ŝ i |}
while (j ≤ r) & (TestFailure==False) do

Compute Ŝ i,j and βi,j

if ‖Xβi −Xβi,j‖2
2 ≤ a|Ŝ i |+ a|Ŝ i,j | then

j ← j + 1
else

TestFailure ← True
end

end
if TestFailure == True then

i ← i + 1
else

break
end

end

î ← i and β ← β̂
i



Choice of a
When σ2 (noise level) is known
In theory: a should be chosen proportionally to σ2

In practice: a = σ2 works fine . . . when σ2 is known

When σ2 (noise level) is known
Need to estimate σ2 with often p > n

I `1−penalized maximum likelihood over (β, σ2) Stadler et
al. 2010

I Square root Lasso / Scaled Lasso Antoniadis (2010) ,
Belloni et al. (2011) , Sun and Zhang (2012)



Choice of a
When σ2 (noise level) is known
In theory: a should be chosen proportionally to σ2

In practice: a = σ2 works fine . . . when σ2 is known

When σ2 (noise level) is known
Need to estimate σ2 with often p > n

I `1−penalized maximum likelihood over (β, σ2) Stadler et
al. 2010

I Square root Lasso / Scaled Lasso Antoniadis (2010) ,
Belloni et al. (2011) , Sun and Zhang (2012)

Lasso

β̂
λ ∈ arg min

β∈Rp

( 1
2‖y −Xβ‖22 + λ‖β‖1

)
σ̂2 = ‖β̂λ − y‖22/n



Choice of a
When σ2 (noise level) is known
In theory: a should be chosen proportionally to σ2

In practice: a = σ2 works fine . . . when σ2 is known

When σ2 (noise level) is known
Need to estimate σ2 with often p > n

I `1−penalized maximum likelihood over (β, σ2) Stadler et
al. 2010

I Square root Lasso / Scaled Lasso Antoniadis (2010) ,
Belloni et al. (2011) , Sun and Zhang (2012)

Square root Lasso

β̂
λ ∈ arg min

β∈Rp

( 1
2‖y −Xβ‖2 + λ‖β‖1

)
σ̂2 = ‖β̂λ − y‖22/n



Choice of a
When σ2 (noise level) is known
In theory: a should be chosen proportionally to σ2

In practice: a = σ2 works fine . . . when σ2 is known

When σ2 (noise level) is known
Need to estimate σ2 with often p > n

I `1−penalized maximum likelihood over (β, σ2) Stadler et
al. 2010

I Square root Lasso / Scaled Lasso Antoniadis (2010) ,
Belloni et al. (2011) , Sun and Zhang (2012)

Square root Lasso

β̂
λ ∈ arg min

β∈Rp

( 1
2‖y −Xβ‖2 + λ‖β‖1

)
σ̂2 = ‖β̂λ − y‖22/n
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2n log p



AVp: theory behind

I Non-parametric statistics: AVp idea ≈ the Lepski method
Lepski (1990), Lepski, Mammen and Spokoiny (1997),
Chichignoud, Lederer and Wainwright (2014)

I Image processing: popularized as the ICI for Intersection of
Intervals of Confidence Katkovnik (1999)

Theorem for the AVp applied to the Lasso: β = β
î

For a large enough, under some technical assumption over the
estimators βi,j , then with high probability it holds that

‖Xβ −Xβ‖22 ≤8a|S̃ |

where S̃ being the smallest active set among Ŝ1, . . . , Ŝr containing
the true support supp(β∗)



Conclusion

Take home message
I New technique for tuning parameters of Lasso but not only:

Sqrt-root Lasso, Thresholded Ridge/Tikohnov Regression.
I (Partial) theoretical guarantees
I Computationally more efficient than CV

Future work
I Improve the noise estimation step
I Encompass more method in the framework
I Generalized to other noise model



More info

Website: http://josephsalmon.eu

I Article on ArXiV next week
I Python Code on demand (soon on authors webpage)
I Slides online after the talk
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