Convex optimization, sparsity and
regression in high dimension

CIMAT 2015

Joseph Salmon
http://josephsalmon.eu
LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay


http://josephsalmon.eu

QOutline

Variable selection and sparsity
Motivation and variable selection variants
fo and ¢ penalties
Sub-gradients / sub-differential

Lasso extensions and improvements
LSLasso : Least-Square Lasso
Lasso variants : Elastic Net
Group structure
Multivariate / Multi-task regression

Optimization for the Lasso
Coordinate descent
Proximal methods — Forward / Backward

Theoretical results for the Lasso
Prediction error
Estimation error
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Sparse linear model

Let y € R” be a signal

Let X = [x1,...,%x,] € R"*? be a
collection of p atoms/features :
corresponds to a dictionary

X is well suited if one can
approximate the signal y ~ Xg*
with a sparse vector 8* € RP

Objectives :
» Estimation g*
» Prediction X3*

Constraints : large p, n, sparse 5*




Statistical model : linear regression

Observed signal :  y e R"

Noise: eeR" (eg., N(0,6%1d,))

71,1
Design matrix : X = [x1,...,Xp] =

Tn,1

True (unknown) signal : 3% € RP

Estimated signal : 3 € R”

Rem: from now on, we assume normalized atoms, e.g.,

T1,p

c Rnxp

xj[? =1,n
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Motivation for sparsity

Finding a sparse /3 (with only a few non-zero coefficients) :
» useful for interpretation (e.g., genomics)

» useful for computational efficiency when p large. Can help
either at training or at predicting (e.g., on-line advertising)

Underlying goal/idea : variable selection

Successful applications :
» Dictionary learning, e.g., image processing Mairal et al. (2010)
» bio-statistics Haury et al. (2012)
» medical imaging Lustig et al. (2007), Gramfort et al. (2012)

> etc.



Variable Selection : many variants

» Screening methods : correlation-screening
» Greedy methods : forward/stage-wise, forward-backward

» Penalized methods
e convex (main focus for today and tomorrow !)
® non-convex

» Tree-based methods Breiman(2001)

» Approximate Message Passing (AMP) methods Donoho et
al. (2009)

Rem: last two points not developed here



Screening rules

Screening (aka correlation screening) : remove the x;'s weakly
correlated with y (either w.r.t to a threshold or as a fixed
proportion) Fan and Lv (2008)

Screening rules :  «if [{x;,y)| = \ijy] <7, then remove x;»

fast (++ +)
> pros : e light computation : p inner products (++)
intuitive (+ + +)

neglect variables interactions between x’s (— — —)
> cons : !

weak theoretical results (——)

Rem: we will revisit screening rules tomorrow



Greedy methods

Many variants : Efroymson (1960), Mallat and Zhang (1993) :
» forward stage-wise = Matching Pursuit

» forward step-wise = Orthogonal Matching Pursuit

Initialize at zero : B =0
Iteratively select variable x; most correlated with residual
p =1y — X[, possibly perform least square on selected variables

o fast(++)
» pros: .

e intuitive(++)

e errors propagated to next step(—)
> Ccons :

e weak theory(—)

Rem: competitive theory for forward-backward Zhang (2011)



Penalized (convex) regression

Penalized convex regression is the main object of the tutorial :

e good theoretical control (++)
> Pros :

e guarantees for convex problems (++)

o still slow, even for convex (—)
» cons : e need to tailor algorithms for specific data constraints

like images, text (—)

Sorrow summary in Buhlmann and van de Geer (2011)
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fo and ¢ penalties



Pseudo-norm ¢

Definition : support and pseudo-norm ¢,
The support of 3 is the set of non-zero indexes :

Supp(ﬂ) = {.7 € [[Lp]]wﬁj a O}

The fp-pseudo norm of 5 € R? is the number of non-zeros
coefficients :

H/BHO = card {.7 € Hlvp]]vﬁj 7 O}

Rem: || - o not a norm, Vi € R*, |[¢5]o = [0
Rem: || - [o not even convex, 51 = (1,0,1,---,0)
By =(0,1,1,---,0) and 3 = Hﬁ1+,32 lo = Hﬁl\loJrHﬁzHo -




{y penalty : the dreamed target

First try to get sparsity enforcing penalty : use £y

. ) 1
50‘) = arg min ( 5“2/ - Xﬁ“% + )‘HﬂHO >
BeERP — ~——

data fitting regularization

BEWARE this is a combinatorial problem. Exact resolution
requires considering all possible supports and computing least
square estimators for all of them ; there are 2P least square to
perform ! !l

Example:
p = 10 possible : &~ 103 least squares

p = 30 impossible : ~ 1010 least squares

Rem: this is a NP-Hard problem



The Lasso and variations

Vocabulary : the “Modern least square” Candes et al. (2008)
» Statistics : Lasso Tibshirani (1996)
» Signal processing variant : Basis Pursuit Chen et al. (1998)

" 1
Weagmn (oo ¢ Ash )
BERP
data fitting term sparsity-inducing penalty

p
where |81 = ) |6)]

j=1
Rem: The regularization parameter A > 0 controls the trade-off
Rem: Convex optimization problem, can be solved with guarantees



Le Lasso :

penalized point of view

B W e arg min
BERP

1
(gl-xsB + Aol )

T ——

data fitting regularization

» Limiting cases :

lim BN — GOLS
AIL%B B

lim AWM =0eR?

A—+00

» Beware : Uniqueness is not automatic, see discussion in
Tibshirani (2013) (e.g., when two atoms are identical)



Constrained interpretation

N 1
,B(A)zargmin ( §Hy—XﬁH% + A8l >

P
perR — ~—
data fitting regularization

has the same solution(s) as a constrained version : for some 7' > 0
argmin |y — X533
BERP
st [Blh<T

Rem: Nevertheless the link T' < X is not explicit

» If T'— 0 one finds the null-solution : 0 € RP

» If T — +o0 one gets 3OS (non-constrained least square)



Sparsity enforcing penalty

Ridge - /5 constraint : non-sparse solution



Sparsity enforcing penalty

Lasso - ¢1 constraint : sparse solution



Orthogonal case : Soft-Thresholding

Let us consider a simple orthogonal design : X' X = Id,,
ly = XBI3 = X"y — XTXBJ5 = [ Xy — B3

because X is isometric. The Lasso objectives becomes :

1 e
= X613+ 81 = . (56— 53+ I3

N2
Separable problem : minimize term by term the sum

1
Need to solve : argmin ~(z — )3 + Alz| for z = x] y
zeR 2

Vocabulary : The previous solution is called the proximal operator
at z of the function z — A|z| (cf. Parikh and Boyd (2013) or
Bauschke and Combettes (2011), for more on proximal methods)



1D regularization

1
Problem solution : 7y (z) = argminz — = (z — )3 + \|z|
zeR 2

ma(z) = sign(2)(l2] = A)+

/1 : Soft Thresholding



1D regularization

1
Problem solution : n)(z) = argmin z — é(z — )3 4+ Mo
zeR

m(z) = 2112 o

— THT,\

£y : Hard Thresholding
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Sub-gradients / sub-differential



Sub-gradients / sub-differential

Definition : sub-gradient / sub-differential

For a convex function f : R* —» R, u € R? is a sub-gradient of f
at z*, if for any z € R% the following holds :

f(@) = f(z*) + (u,z — 2%)

The sub-differential is the set of all sub-gradients :
of(z*) = {ue R : Yz e R? f(2) = f(z*) + (u, z — z*)}.

v

Rem: when the sub-gradient is unique this is the standard gradient

Y f
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Fermat’s Rule

Theorem J

A point z* minimizes a convex function f : R? — R iff 0 € df (z*)

Proof : use the sub-gradient definition :

» 00f (z*) iff Yo e RY f(z) = f(2*) + (0,2 — 2%) = f(z%)



Fermat’s Rule

Theorem }

A point z* minimizes a convex function f : R? — R iff 0 € df (z*)

Proof : use the sub-gradient definition :
> 00f(z*) iff Yz e RY, f(2) = f(2%) + (0, — 2*) = f(z*)
Rem: Visually this means a horizontal tangent is admissible

y f




Sub-differential for the absolute value

Function : abs Sub-differential : sign

f:{R —R (1} ifa*e] —o0,0[
z || of (z*) = { {1} if 2* €]0, +-00[
[-1,1] ifz* =0

y

af(x%)
1
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Sub-differential for the absolute value

Function : abs

R —-R
f:{
z |z

Sub-differential : sign

{-1
of(z*) = § {1}

[_171]

1

y

if 2% €] —00,0[
if 2* €]0, +00[
if 2% =0

af(x%)

4
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v ;L )
1

0
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Sub-differential for the absolute value

Function : abs Sub-differential : sign
f R —-R {-1} ifz* €] —o00,0]
z || of (z*) = < {1} if 2* €]0, +-00[

[-1,1] ifz* =0

v 4 v ()
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Soft thresholding through sub-gradients

z* € argmin fy ,(z) < 0 € dfy ,(z*) for fr.(z) = 3(z — )3 + A|z].
zeR

0€ dfy.(z%) =2z — 2% + A\J| - |(z¥)
0 € 0fy.(z%) =z — ™ + Asign(z™)
So 0€dfy.(z%) & ¥ € z + Asign(z)

Considering the cases z* > 0,z* = 0,2* < 0 leads to :

e
0 sifz] <A
nsra(z) =z =<4z—X si 2 =\ T
Z4+ A sioz < =)




Fermat’s Rule for the Lasso

A

. 1
Bo‘) earﬁgggn <2y—Xﬁ|§ +)‘|5|1>
€

Necessary and sufficient optimality conditions (Fermat’s Rule) :

3N sign (B¢ si (BN,
tietnl o (L2 o ) Siggw;;jg

Rem: for OLS the normal equation are x; (y XB
Rem: There exists a critical value Ayax = ‘H[ﬁix]} I(x;, y>] s.t.
jellp

YA > Amax, BV =0



Equi-correlation set and path properties

The set

By ={je[Lpl: 1x/(y = XBV)[ = N}
is called the Equi-correlation set Tibshirani (2013)
Proposition Mairal and Yu (2012)

Assume that XE)\ is full rank for all A € [Amin, Amax], then the
Lasso solution 3™ is unique and

[)\mim )\max] — R?
A — Q(A)

is a piecewise affine function (as a function of \)

Rem: this will lead to special algorithm for solving the lasso and
goes back to Osborne et al. (2000) and Efron et al. (2004)



Numerical example : simulation

Experiment settings :
» Sizes are : n = 60, p = 40
» f* =(1,1,1,1,1,0,...,0) € R? (5 non-zero coefficients)

» X € R™*P with atoms being drawn according to a standard
Gaussian distribution

» y = XB* + ¢ e R™ with e ~ N(0,021d,,), with o =1
» Using a grid of 500 values for A



Coefficient value

3.0

2.5

2.0

-1.0

Lasso path w/o Cross-Validation

Lasso path: p = 40,n = 60

A

Code : lasso_path in

10°

sklearn

10



Coefficient value

3.0

2.5

2.0

1.5

1.0

0.5

0.0 b

—0.5

-1.0

Lasso path w/o Cross-Validation

Lasso path: p = 40,n = 60

CV =5

107! 10°
A

Code : lasso_path and LassoCV in sklearn

10!



Practical interest for the Lasso

» Numerical property : the Lasso is a convex problem
» Variable selection / sparsity : BN has potentially many
coefficients set to zero

» A controls the sparsity level : if A is large solutions are sparser
(though monotonicity is sometimes not satisfied)

Example: We obtained 25 non-zero coefficients for LassoCV
for the previous example
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Lasso extensions and improvements
LSLasso : Least-Square Lasso



The Lasso bias

Lasso bias : large coefficients shrunk toward 0 (soft-thresholding)
14 Signal estimation: p = 40,n = 60
= True signal
1.2 === Lasso
L]
n
1.0 peit
n
[}
i
08 |
)
I
06| 4
L]
!
y ‘I
04 ¥
1
L]
1
0.2 '
)
Al
0.0
0 5 10 15 20 25 30 35 40

[llustration on the previous example



The Lasso bias

Lasso bias : large coefficients shrunk toward 0 (soft-thresholding)

14 Signal estimation: p = 40,n = 60

= True signal
=== Lasso
------ LSLasso

0.0

0 5 10 15 20 25 30 35 40

[llustration on the previous example



The Lasso bias : a simple remedy

A two-step strategy :

LSLasso (Least Square Lasso)

1. Lasso : get S and its support Supp(B()‘))
2. Perform least square on the estimated support supp(ﬁ(’\))

5\ . 1
5£S)I,asso = arg min 5“?/ - XBH%
BeRP

supp(8)=supp(8™)

v

Rem: Use CV for the whole procedure; choosing A by CV over the
Lasso and then performing least-square keeps too many variables

Rem: Many names : Gauss-Lasso, debiased-Lasso, LSLasso, etc.

Rem: LSLasso not usually coded in standard packages



Coefficient value

3.0

2.5

2.0

LSLasso path

LSLasso path: p = 40,n = 60

10! 10°
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Coefficient value

3.0

2.5

2.0

1.0

LSLasso path

LSLasso path: p = 40,n = 60

10!

10°

10



Prediction Error

Prediction : Lasso vs. LSLasso

Prediction Error: p = 40,n = 60

10?
10
10°
CV-Ridge
'
CV-Lasso '
107! ' 8
H 1 CV-LSLasso
' '
' '
' '
2 5 s
10- : :
102 107! 10 10!



LSLasso properties

Advantages
» Large coefficients less shrunk

» Improved interpretablility : fewer “parasites” variables
e.g., on the previous example LSLassoCV identifies correctly
the 5 “true” non-zero variables

LSLasso : useful for estimation

Limitations
» In terms of prediction the difference can be small

» Need more computation : re-compute as many least squares as
number of \'s considered (though with smaller sizes/supports)

v

Rem: procedures to perform debiasing on the fly Deledalle et
al. (2015)
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Lasso extensions and improvements

Lasso variants : Elastic Net



Elastic-net

Motivation : for correlated variables, the Lasso picks only one,
though sharing the weights among them could be better

Elastic-Net Zou et Hastie (2005) is the unique solution of
A(x . (1
By = argmin (QHy = XBI3+ A (a8l + (1 - a)ﬁ!§/2)>
(S

Rem: requires two parameters — one for the global regularization,
one for the trade-off between Ridge (aka Tikhonov) vs. Lasso
Rem: The Elastic-Net solution is unique

Example: Consider (normalized) y = x; = x3
Lasso solutions : § with 51 and B2 s.t. 51+ 2 =1 — A (for A < 1)
Elastic- Net solution : 8 with 51 = 82 = (1 — Aa)/(2+ A1 — «))



Coefficient value
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20 Enet path: p = 40,n = 60
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15

1.0

0.5

0.0 %

'—/_
0.5
-1.0
1072 107! 10" 10!
A



Coefficient value

Elastic-Net : o|3]; + (1 — a)||3]3/2

2.0 Enet path: p = 40,n = 60
1.5
1.0
0.5
0.0 %
—05 =
-1.0
1072 107! 10° 100
A



Coefficient value
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20 Enet path: p = 40,n = 60

15

1.0

0.0 %

—
—0.5
1.0
1072 107! 10" 10!
A

a = 0.90



Coefficient value
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20 Enet path: p = 40,n = 60

—1.0
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Lasso extensions and improvements

Group structure



Group-Lasso

The ¢ penalty ensures that few coefficients are active, but no
structure on the support is enforced

We may be interested in specific sparsity patterns :

» Groups/blocks structure : Group-Lasso Yuan et Lin (2006)

» Groups/blocks + individual structure : Sparse-Group Lasso
Simon et al. (2012)

» Hierarchical structure (e.g., for higher order interactions of
variables : x; - x;) Bien et al. (2013)

> etc.



Sparsity patterns

We assume here that a group structure is known over the variables
we investigate : [1, p] = Jyeg 9

Vector and active coefficients (in orange) :

Sparsity pattern : no structure

Penalty considered : Lasso

18l = 25— 15i]



Sparsity patterns

We assume here that a group structure is known over the variables
we investigate : [1, p] = Ugeg g

Vector and active coefficients (in orange) :

Sparsity pattern : groups

Penalty considered : Group-Lasso

|5

2.1 = Dgec Byl



Sparsity patterns

We assume here that a group structure is known over the variables
we investigate : [1, p] = Ugeg g

Vector and active coefficients (in orange) :

Sparsity pattern : groups + sub-groups

Penalty considered : Sparse-Group Lasso

affly+ 1 —a)|p

21 = aXi 1B + (1 —a) X cqlBgl2
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Lasso extensions and improvements

Multivariate / Multi-task regression



Multivariate / Multi-task regression
Aim : solving m (tasks) linear regression jointly : ¥ ~ XB

m

m p

—

B ||p

nilry X

2

» Y e R*"*™ : observations matrix
» X € R"*P : design matrix (shared)

» B e RP*™ : coefficients matrix

Example: several signals are observed during a time slot,
e.g., various sensors for the same phenomenon

Rem: cf. MultiTaskLasso in sklearn



Penalized least-square for multi-task
regression

For multi-task one can regularize the least square :

R 1
By = argmin ( ~|Y —=XB|% + X\(B) )
BeRpxm 2

data fitting regularization

) is a penalty term to be specified (to enforce sparsity)

Rem: the Frobenius norm | - |z is defined for any matrix
AeRm>n .

ny  n2

1417 = 2, 2. 45

J1=1j2=1



Multi-task penalties

Vector penalties need to be adapted for matrices :

Sparse matrix :
unstructured

Lasso :

”B”l = ?:1 ZZL=1 |Bj,k|

B Parameter



Multi-task penalties

Vector penalties need to be adapted for matrices :

Sparse matrix :
groups

Group-Lasso :

I1Bll21 = 25_1 | Bj: 2

Rem: B;. is the j line of B

B Parameter



Multi-task penalties

Vector penalties need to be adapted for matrices :

Sparse matrix :
4 groups + sub-groups

Sparse-Group Lasso :

I I .
a|Bli1 + (1 — «a)|Bl21

-

B Parameter



Logistic regression - Generalized Linear Model

Other data-fitting terms : Generalized Linear Model (GLM)
Motivation : other noise like Poisson, Laplace, etc. or different
problem like classification

Logistic regression (binary case)

One observes for each i € [1, n], a class label ¢; € {1,2}, so the
observations can be recast as y; = 1.,_1}. Then, the data-fitting
term considered is

F(B) = D) (~yiX::B +log (1 + exp (X;.5))) .
=1

instead of the least square term f(3) = |y — Xf3||3/2, see for
instance Buhlmann and van de Geer (2011), Ch. 3
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Optimization for the Lasso
Coordinate descent



Coordinate descent description

Objective : solve argmin f(f3)
BeRP

Initialization : 3(©
While not converged
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Coordinate descent description

Objective : solve argmin f(f3)
BeRP

Initialization : 3(©
While not converged

B e argmin £(5;, 88, g L gD

B1eR

B3 € argmin £(8F) 5, B, L gD
B2€R

B € argmin f(8®), 8, B, ..., BED)
B3eR

B € arg min f( NN S
ﬁ/pe

k=k+1




Motivation

Coordinate descent can be very fast, especially if the design X
is unstructured and sparse (otherwise see Forward-Backward)

Convergence toward a minimum is guaranteed (for smooth or
separable non-smooth functions cf. Tseng (2001))

can visit the coordinate cyclically, randomly, etc.

sometimes referred to as block methods : same idea but
update a block of coordinates



Lasso : coordinate descent

p
arg min £(9) for £(5) = Ly — X612 + A Y. |5

BERP

j=1
Minimize w.r.t 3; keeping Bi's (k # j) fixed :
BJ = a‘rgminf(ﬁla o aﬁp)
BieR
- argmmfny— D Bexk = x3B51% + A Y 1851 + Al
k#j k#3j
_ 2
arg mln ,”X] & Bi —<y— Z Brxk, X85 + Al Bjl
k#j

2
) 1 _ A

= argmin 1% | 5 (ﬁ} — %172y = )] Bka,xp) + Wlﬁj\
J

ER k#j

1
Reminder : ng7(2) = argminz — —(z — ) + A
zeR 2



Lasso : coordinate descent (I1)

Solution : B = s /|2 <|Xj|_2<y - Bka7Xj>)

k#j

Initialize : parameter 8 = 0 € R?, residual p = y e R”
While not converged, pick j € [1, p] and perform :

P — o+ x;6;
By — st /i) (%] P /I1%51%)

int
p— p™ —x;pB;

Rem: again, pick coordinates cyclically or (uniformly) at random
Rem: low memory impact storing p and 3
Rem: interesting to choose |x;[3 = 1
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Optimization for the Lasso

Proximal methods — Forward / Backward



Composite minimization

One aims at minimizing: F=f+g

Rem: for the Lasso f(8) = | X8 — y|3/2 and g = )| 8|1

» f smooth : often meaning Vf is L-Lipschitz

> g proximable (prox-capable) : prox, can be “efficiently”
computed, where

. 1
prox,(w) = arg min <2|z — w3 + g(z))

2zeRP

More details on prox properties in Parikh and Boyd (2013)



Examples of proximity operators

. 1
prox,(w) = arg min <2|z — |5 + g(z))

zeRP

Null function : if g = 0, then prox, = Id

Indicator function : g = ¢t for a closed convex set C' < RP?,
prox, = m¢, projection over the set C
Soft-Thresholding : g = A| - | (i.e., p =1 here), then
prox,(w) = nsr(w) = sign(w)(Jw| — A)+

Vector Soft-Thresholding : g = A| - [|1, then

prox,(w) = (g (W), .., nsTa(wi)) "



Forward-Backward / Iterative Soft
Thresholding

Extension of gradient descent for a sum of functions :

General Forward-Backward

Choose step size value : «
Initialization : § =0 e RP
While not converged

B~ ProX,g (B —aVf(B))




Forward-Backward / Iterative Soft
Thresholding

Extension of gradient descent for a sum of functions :

General Forward-Backward Iterative Soft-thresholding
Choose step size value : « Choose step size value : «
Initialization : § =0 e RP Initialization : 3 =0€ R?
While not converged While not converged

,6’<—prOXag (ﬁ_avf(ﬁ)) B(_TIST,Q)\ (6+O¢XT(y_Xﬁ))




Forward-Backward / Iterative Soft
Thresholding

Extension of gradient descent for a sum of functions :

General Forward-Backward Iterative Soft-thresholding
Choose step size value : « Choose step size value : «
Initialization : § =0€ R? Initialization : 3 =0€ R?

While not converged While not converged

B prox,, (5 — aV/(8)) B nsr.an (B + aXT(y— XB)

Rem: Majorization-minimization : if & < 1/L one has a quadratic
majorant, and the prox step consists in solving

axganin (1(9) + CVJ(9). 5~ 5)+ 518~ 812+ o)

B'eRP



Forward-Backward / Iterative Soft
Thresholding (1)

» Interesting when the operator z — X "z can be performed
efficiently : often the case in imaging, e.g., for FFT, Wavelet
transforms, etc.

» Requires « to be tuned/chosen : default is often
a=1/L = 1/pimax(X T X) (spectral radius of X' X)

» Common acceleration : Fast Iterative Soft Thresholding
Algorithm (FISTA) Nesterov (1983), Beck and Teboulle
(2009)



Homotopy methods for the Lasso

Family of algorithms introduced by Osborne et al. (2000); the
most famous variant is called LARS Efron et al. (2004)

It leverages the piecewise affine property of the Lasso w.r.t A and
least squares computation

e Provide all solutions up to interpolation
> pros :

e Only finite number of kinks computed

e Not stable for small A's
» cons : e can produce many solutions, up to O((37 +1)/2)

e Do not generalize to group, logistic, etc.

cf. Mairal and Yu (2012) for more details on Lasso homotopy



QOutline

Theoretical results for the Lasso
Prediction error



Theoretical analysis of the lasso

Results require (hard to check) assumptions on the design X :
» Prediction bounds Bickel et al. (2009) : controlling
| XBN — X5*|3
» Estimation bounds Bickel et al. (2009), Wainwright (2009) :
controlling |6 — 5% or |3 — %2
» Support/sign recovery Lounici (2008) : controls when
sign(6V) = sign(8*) or supp(8™V) = supp(5*)

Rem: the control could be in expectation or with high probability

Rem: large volume of literature on this field, hard to be exhaustive
A good book for this is cf. Buhlmann et van de Geer (2011)



Prediction error for the Lasso

Take away message : optimal prediction error (minimax sense)

Theorem Bickel et al. (2009)

Assume the noise is Gaussian and the atoms are normalized s.t.

|Ix;|3 = n, then for A > cio4/nlog(p) the following holds with
high probability :

*
|XBW — XB*[3/n < CXUQW

where cx is a constant depending on the design matrix X

v

Rem: the log(p) term is the price to pay for not knowing supp(5*)
Rem: the assumption needed on the design so that cx > 0 is not
computationally checkable but are satisfied for random matrices
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Theoretical results for the Lasso

Estimation error



Estimation and support recovery for the Lasso

Take away message : the Lasso recovers the true support with high
probability

For this result to hold, similar assumptions on the design matrix
are needed, but more is needed \Wainwright (2009) :

The true support supp(5*) needs to be well separated from zero,
otherwise some variables might be missing : they could be
interpreted as noise fluctuations

min |B5| > co4/nlog(p)

jesupp(8*)

Rem: the sign vector might also be recovered w.h.p
Rem: results for a thresholded Lasso estimator Lounici (2008)



Conclusion

Lasso and variants properties :
» Lasso introduces sparsity (and possibly bias)
» Introduction to non-smooth optimization
» Extension to (partially) reduce bias

» Convex algorithms to solve ¢ type regularization

Points not addressed :

» Parameter(s) tuning : Cross Validation and variants such as
Bolasso Bach (2008) or Stability Selection Meinshausen et
Buhlmann (2010)

» Noise estimation : v/Lasso Belloni et al. (2011), Scaled Lasso
Zhang and Zhang (2012)

» Non-convex penalties : e.g., SCAD Fan and Li (2002),
Adaptive-Lasso Zou (2006), reweighted ¢ Candes et
al. (2008), etc.
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