(Gap) Safe screening rules to speed-up sparse regression solvers

Joseph Salmon

http://josephsalmon.eu LTCI, Télécom Paristech, Université Paris-Saclay NewUni

Joint work with: Eugene Ndiaye (Télécom ParisTech) Olivier Fercoq (Télécom ParisTech) Alexandre Gramfort (INRIA, Parietal Team)

Table of Contents

Motivation - notation

Optimization and convexity reminders

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

Signals can often be represented through a combination of a few ${\color{black} atoms}\ /\ {\color{black} features}$:

Fourier decomposition for sounds

Signals can often be represented through a combination of a few ${\color{black} atoms}\ /\ {\color{black} features}$:

- Fourier decomposition for sounds
- Wavelet for images (1990's)

Signals can often be represented through a combination of a few atoms / features :

- Fourier decomposition for sounds
- Wavelet for images (1990's)
- Dictionary learning for images (late 2000's)

Signals can often be represented through a combination of a few atoms / features :

- Fourier decomposition for sounds
- Wavelet for images (1990's)
- Dictionary learning for images (late 2000's)
- More inverse problems

Another motivation: M/EEG inverse problem

- sensors: magneto- and electro-encephalogram measurements during a cognitive experiment (*e.g.*, sensory or memory)
- sources: brain locations

Modeling for this problem

Simplest model: standard sparse regression

 $y \in \mathbb{R}^n$: a signal

 $X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}:$ dictionary of atoms/features

 $\label{eq:asympton} \begin{array}{l} \underline{ \mbox{Assumption}} : \mbox{signal well} \\ \hline \mbox{approximated by a sparse} \\ \mbox{combination } \beta^* \in \mathbb{R}^p : \ y \approx X\beta^* \end{array}$

Objective(s): find $\hat{\beta}$

- Estimation: $\hat{\beta} \approx \hat{\beta}^*$
- Prediction: $X\hat{\beta} \approx X\hat{\beta}^*$
- Support recovery: $\operatorname{supp}(\hat{\beta}) \approx \operatorname{supp}(\beta^*)$

<u>Constraints</u>: large p, sparse β^*

The ℓ_0 penalty

Objective: use Least-Squares with an ℓ_0 penalty to enforce sparsity

where $\|\beta\|_0 = \operatorname{card}(\{j \in [\![1, p]\!], \beta_j \neq 0\}) = \operatorname{card}(\operatorname{supp}(\beta))$

Combinatorial problem; "NP-hard" Natarajan (1995)

 \hookrightarrow Exact resolution requires Least-Squares (LS) solutions for all sub-models, *i.e.*, compute LS for all possible supports (up to 2^p)

- p = 10 possible: $\approx 10^3$ least squares
- p = 30 impossible: $\approx 10^{10}$ least squares

<u>Rem:</u> for "small" problems mixed integer programming (MIP) well suited Bertsimas et al. (2015)

- Statistics: Lasso Tibshirani (1996)
- Signal processing variant: Basis Pursuit Chen et al. (1998)

- Solutions are **sparse** (sparsity level controlled by λ)
- \blacktriangleright Need to tune/choose λ (standard is Cross-Validation)

- Statistics: Lasso Tibshirani (1996)
- Signal processing variant: Basis Pursuit Chen et al. (1998)

- Solutions are **sparse** (sparsity level controlled by λ)
- Need to tune/choose λ (standard is Cross-Validation)
- Theoretical guaranties Bickel et al. (2009)

- Statistics: Lasso Tibshirani (1996)
- Signal processing variant: Basis Pursuit Chen et al. (1998)

- Solutions are **sparse** (sparsity level controlled by λ)
- Need to tune/choose λ (standard is Cross-Validation)
- Theoretical guaranties Bickel et al. (2009)
- Uniqueness not automatic, see discussion in Tibshirani (2013)

- Statistics: Lasso Tibshirani (1996)
- Signal processing variant: Basis Pursuit Chen et al. (1998)

- Solutions are **sparse** (sparsity level controlled by λ)
- Need to tune/choose λ (standard is Cross-Validation)
- Theoretical guaranties Bickel et al. (2009)
- Uniqueness not automatic, see discussion in Tibshirani (2013)
- Refinements: non-convex approaches Adaptive Lasso Zou (2006), scaled invariance Zhang and Zhang (2012), etc.

- Statistics: Lasso Tibshirani (1996)
- Signal processing variant: Basis Pursuit Chen et al. (1998)

- Solutions are **sparse** (sparsity level controlled by λ)
- Need to tune/choose λ (standard is Cross-Validation)
- Theoretical guaranties Bickel et al. (2009)
- Uniqueness not automatic, see discussion in Tibshirani (2013)
- Refinements: non-convex approaches Adaptive Lasso Zou (2006), scaled invariance Zhang and Zhang (2012), etc.

More constraints: many Lasso's are needed

Reminder:
$$\hat{\beta}^{(\lambda)} \in \underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} \frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1$$

- Additional constraint: λ hard to "guess" in practice
- Common strategy: compute solutions over a grid, *i.e.*, get $\hat{\beta}^{(\lambda_0)}, \ldots, \hat{\beta}^{(\lambda_{T-1})}$, with $\lambda_0 > \cdots > \lambda_{T-1}$ for many *T*'s, then pick the "best" one Standard grid (R-glmnet / Python-sklearn) : geometric with $\lambda_0 = \|X^{\top}y\|_{\infty}$, $\lambda_{T-1} = \alpha\lambda_{\max}$, T = 100 and $\alpha = 0.001$

What follows is **not** addressed in this talk:

- Grid choice
- Criterion to pick a "best" λ parameter : cross-validation, SURE (Stein Unbiased Risk Estimation), etc.

- Safe screening rules can help:
 - 1. prior any computation (static)
 - 2. thanks to solutions already obtained for close λ 's (sequential)
 - 3. along iterative steps of the algorithm (dynamic)

- Safe screening rules can help:
 - 1. prior any computation (static)
 - 2. thanks to solutions already obtained for close λ 's (sequential)
 - 3. along iterative steps of the algorithm (dynamic)
- Flexible : well suited for most iterative solvers, particularly for coordinate descent (more on that later) or active sets methods

- Safe screening rules can help:
 - 1. prior any computation (static)
 - 2. thanks to solutions already obtained for close λ 's (sequential)
 - 3. along iterative steps of the algorithm (dynamic)
- Flexible : well suited for most iterative solvers, particularly for coordinate descent (more on that later) or active sets methods
- Guaranteed convergence: when using a (proved) converging solvers, adding a safe screening step maintains convergence

- Safe screening rules can help:
 - 1. prior any computation (static)
 - 2. thanks to solutions already obtained for close λ 's (sequential)
 - 3. along iterative steps of the algorithm (dynamic)
- Flexible : well suited for most iterative solvers, particularly for coordinate descent (more on that later) or active sets methods
- Guaranteed convergence: when using a (proved) converging solvers, adding a safe screening step maintains convergence
- Simplicity: easy to incorporate in standard solvers, contrarily to non-safe methods like Strong rules Tibshirani et al. (2012)

- Safe screening rules can help:
 - 1. prior any computation (static)
 - 2. thanks to solutions already obtained for close λ 's (sequential)
 - 3. along iterative steps of the algorithm (dynamic)
- Flexible : well suited for most iterative solvers, particularly for coordinate descent (more on that later) or active sets methods
- Guaranteed convergence: when using a (proved) converging solvers, adding a safe screening step maintains convergence
- Simplicity: easy to incorporate in standard solvers, contrarily to non-safe methods like Strong rules Tibshirani et al. (2012)

Table of Contents

Motivation - notation

Optimization and convexity reminders

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

The Lasso: algorithmic point of view

Commonly used algorithms for solving this **convex** program:

- ▶ Homotopy method LARS: efficient for small *p* Osborne *et al.* (2000), Efron *et al.* (2004) and to get full path (*i.e.*, the full $\lambda \rightarrow \hat{\beta}^{(\lambda)}$) <u>Limitation</u>: do not generalize to other data-fitting term, potentially too many kinks Mairal and Yu (2012) (up to 3^p)
- (F)ISTA, Forward Backward, proximal algorithm: useful in signal processing where r → X^Tr is cheap to compute (*e.g.*, FFT, Fast Wavelet Transform, etc.) Beck and Teboulle (2009)
 Limitation: unstructured X in statistics / machine learning

The Lasso: algorithmic point of view

Commonly used algorithms for solving this **convex** program:

- ▶ Homotopy method LARS: efficient for small *p* Osborne *et al.* (2000), Efron *et al.* (2004) and to get full path (*i.e.*, the full $\lambda \rightarrow \hat{\beta}^{(\lambda)}$) Limitation: do not generalize to other data-fitting term, potentially too many kinks Mairal and Yu (2012) (up to 3^p)
- (F)ISTA, Forward Backward, proximal algorithm: useful in signal processing where $r \rightarrow X^{\top}r$ is cheap to compute (*e.g.*, FFT, Fast Wavelet Transform, etc.) Beck and Teboulle (2009) Limitation: unstructured X in statistics / machine learning
- <u>Coordinate descent:</u> useful for large p and (unstructured) sparse matrix X, e.g., for text encoding Friedman et al. (2007)
 <u>Conclusion</u>: standard approach in machine learning/statistics

The Lasso: algorithmic point of view

Commonly used algorithms for solving this **convex** program:

- ▶ Homotopy method LARS: efficient for small *p* Osborne *et al.* (2000), Efron *et al.* (2004) and to get full path (*i.e.*, the full $\lambda \rightarrow \hat{\beta}^{(\lambda)}$) <u>Limitation</u>: do not generalize to other data-fitting term, potentially too many kinks Mairal and Yu (2012) (up to 3^p)
- (F)ISTA, Forward Backward, proximal algorithm: useful in signal processing where $r \rightarrow X^{\top}r$ is cheap to compute (*e.g.*, FFT, Fast Wavelet Transform, etc.) Beck and Teboulle (2009) Limitation: unstructured X in statistics / machine learning
- Coordinate descent:

useful for large p and (unstructured) sparse matrix X, *e.g.*, for text encoding Friedman *et al.* (2007) **Conclusion**: standard approach in machine learning/statistics

<u>Goal</u>: find a solution for $\underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} f(\beta) := \|y - X\beta\|^2 / 2 + \lambda \|\beta\|_1$

Algorithm: (Block) coordinate descent

Input : f, number or epochs K (or pass over the data) Initialization: k = 0 and $\beta^{(k)} = 0 \in \mathbb{R}^p$ (or warm start)

<u>Goal</u>: find a solution for $\underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} f(\beta) := \|y - X\beta\|^2 / 2 + \lambda \|\beta\|_1$

Algorithm: (Block) coordinate descent

Input : f, number or epochs K (or pass over the data) Initialization: k = 0 and $\beta^{(k)} = 0 \in \mathbb{R}^p$ (or warm start) for $k = 1, \dots, K$ do

<u>Goal</u>: find a solution for $\underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} f(\beta) := \|y - X\beta\|^2 / 2 + \lambda \|\beta\|_1$

Algorithm: (Block) coordinate descent

Input : f, number or epochs K (or pass over the data) Initialization: k = 0 and $\beta^{(k)} = 0 \in \mathbb{R}^p$ (or warm start) for k = 1, ..., K do $\beta_1^{(k)} \leftarrow \underset{\beta_1 \in \mathbb{R}}{\operatorname{arg\,min}} f(\beta_1, \beta_2^{(k-1)}, \beta_3^{(k-1)}, \ldots, \beta_{p-1}^{(k-1)}, \beta_p^{(k-1)})$

<u>Goal</u>: find a solution for $\underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} f(\beta) := \|y - X\beta\|^2 / 2 + \lambda \|\beta\|_1$

Algorithm: (Block) coordinate descent

<u>Goal</u>: find a solution for $\underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} f(\beta) := \|y - X\beta\|^2 / 2 + \lambda \|\beta\|_1$

Algorithm: (Block) coordinate descent

<u>Goal</u>: find a solution for $\underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} f(\beta) := \|y - X\beta\|^2 / 2 + \lambda \|\beta\|_1$

Algorithm: (Block) coordinate descent

Input : f, number or epochs K (or pass over the data) Initialization: k = 0 and $\beta^{(k)} = 0 \in \mathbb{R}^p$ (or warm start) for k = 1, ..., K do $\begin{vmatrix} \beta_1^{(k)} \leftarrow \arg\min_{\beta_1 \in \mathbb{R}} f(\beta_1, \beta_2^{(k-1)}, \beta_3^{(k-1)}, \dots, \beta_{p-1}^{(k-1)}, \beta_p^{(k-1)}) \\ \beta_2^{(k)} \leftarrow \arg\min_{\beta_2 \in \mathbb{R}} f(\beta_1^{(k)}, \beta_2, \beta_3^{(k-1)}, \dots, \beta_{p-1}^{(k-1)}, \beta_p^{(k-1)}) \\ \beta_3^{(k)} \leftarrow \arg\min_{\beta_3 \in \mathbb{R}} f(\beta^{(k)}, \beta_2^{(k)}, \beta_3, \dots, \beta_{p-1}^{(k-1)}, \beta_p^{(k-1)}) \\ \vdots \end{vmatrix}$

<u>Goal</u>: find a solution for $\underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} f(\beta) := \|y - X\beta\|^2 / 2 + \lambda \|\beta\|_1$

Algorithm: (Block) coordinate descent

Input : f, number or epochs K (or pass over the data) Initialization: k = 0 and $\beta^{(k)} = 0 \in \mathbb{R}^p$ (or warm start) for $k = 1, \ldots, K$ do $\beta_{1}^{(k)} \leftarrow \underset{\beta_{1} \in \mathbb{R}}{\arg\min} f(\beta_{1} \ , \beta_{2}^{(k-1)}, \beta_{3}^{(k-1)}, \dots, \beta_{p-1}^{(k-1)}, \beta_{p}^{(k-1)})$ $\beta_{2}^{(k)} \leftarrow \underset{\beta_{2} \in \mathbb{R}}{\arg\min} f(\beta_{1}^{(k)}, \beta_{2} \ , \beta_{3}^{(k-1)}, \dots, \beta_{p-1}^{(k-1)}, \beta_{p}^{(k-1)})$ $\beta_{3}^{(k)} \leftarrow \underset{\beta_{2} \in \mathbb{D}}{\min} f(\beta^{(k)}, \beta_{2}^{(k)} \ , \beta_{3} \ , \dots, \beta_{p-1}^{(k-1)}, \beta_{p}^{(k-1)})$ $\bar{\beta}_3 \in \mathbb{R}$

<u>Goal</u>: find a solution for $\underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} f(\beta) := \|y - X\beta\|^2 / 2 + \lambda \|\beta\|_1$

Algorithm: (Block) coordinate descent

Input : f, number or epochs K (or pass over the data) Initialization: k = 0 and $\beta^{(k)} = 0 \in \mathbb{R}^p$ (or warm start) for $k = 1, \ldots, K$ do $\beta_{1}^{(k)} \leftarrow \underset{\beta_{1} \in \mathbb{R}}{\arg\min} f(\beta_{1} \ , \beta_{2}^{(k-1)}, \beta_{3}^{(k-1)}, \dots, \beta_{p-1}^{(k-1)}, \beta_{p}^{(k-1)})$ $\beta_{2}^{(k)} \leftarrow \underset{\beta_{2} \in \mathbb{R}}{\arg\min} f(\beta_{1}^{(k)}, \beta_{2} \ , \beta_{3}^{(k-1)}, \dots, \beta_{p-1}^{(k-1)}, \beta_{p}^{(k-1)})$ $\beta_{3}^{(k)} \leftarrow \underset{\beta_{2} \in \mathbb{D}}{\min} f(\beta^{(k)}, \beta_{2}^{(k)} \ , \beta_{3} \ , \dots, \beta_{p-1}^{(k-1)}, \beta_{p}^{(k-1)})$ $\bar{\beta}_3 \in \mathbb{R}$ $\vdots \\ \beta_p^{(k)} \leftarrow \underset{\substack{\beta_p \in \mathbb{R} \\ \beta_p \in \mathbb{R}}}{\arg\min} f(\beta_1^{(k)}, \beta_2^{(k)}, \beta_3^{(k)}, \dots, \beta_{p-1}^{(k)}, \beta_p))$ **Output :** $\beta^{(K)}$

<u>Goal</u>: find a solution for $\underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} f(\beta) := \|y - X\beta\|^2 / 2 + \lambda \|\beta\|_1$

Algorithm: (Block) coordinate descent

Input : f, number or epochs K (or pass over the data) Initialization: k = 0 and $\beta^{(k)} = 0 \in \mathbb{R}^p$ (or warm start) for $k = 1, \ldots, K$ do $\beta_{1}^{(k)} \leftarrow \underset{\beta_{1} \in \mathbb{R}}{\arg\min} f(\beta_{1} \ , \beta_{2}^{(k-1)}, \beta_{3}^{(k-1)}, \dots, \beta_{p-1}^{(k-1)}, \beta_{p}^{(k-1)})$ $\beta_{2}^{(k)} \leftarrow \underset{\beta_{2} \in \mathbb{R}}{\arg\min} f(\beta_{1}^{(k)}, \beta_{2} \ , \beta_{3}^{(k-1)}, \dots, \beta_{p-1}^{(k-1)}, \beta_{p}^{(k-1)})$ $\beta_{3}^{(k)} \leftarrow \underset{\beta_{2} \in \mathbb{R}}{\min} f(\beta^{(k)}, \beta_{2}^{(k)} \ , \beta_{3} \ , \dots, \beta_{p-1}^{(k-1)}, \beta_{p}^{(k-1)})$ $\beta_3 \in \mathbb{R}$ $\begin{array}{l} \vdots \\ \beta_p^{(k)} \leftarrow \operatorname*{arg\,min}_{\beta_p \in \mathbb{R}} f(\beta_1^{(k)}, \beta_2^{(k)} \quad , \beta_3^{(k)} \quad , \dots, \beta_{p-1}^{(k)} \quad , \beta_p \end{array})$ **Output :** $\beta^{(K)}$

Break if : stable iterates/objective, small duality gap,...

Illustration of convergence (convex case)

 Convergence toward global minimum for smooth (gradient Lipschitz) functions, cf. Tseng (2001)

Illustration of convergence (convex case)

 Convergence toward global minimum for smooth (gradient Lipschitz) functions, cf. Tseng (2001)

 <u>Beware</u>: otherwise convergence no longer guaranteed even for convex cases

 <u>Beware</u>: otherwise convergence no longer guaranteed even for convex cases

 <u>Beware</u>: otherwise convergence no longer guaranteed even for convex cases

Definition: sub-gradient / sub-differential

For $f : \mathbb{R}^d \to \mathbb{R}$ a convex function, $u \in \mathbb{R}^d$ is a sub-gradient of f at x^* , if for all $x \in \mathbb{R}^d$ one has

$$f(x) \ge f(x^*) + \langle u, x - x^* \rangle$$

The sub-differential is the <u>set</u> $\partial f(x^*) = \{u \in \mathbb{R}^d : \forall x \in \mathbb{R}^d, f(x) \ge f(x^*) + \langle u, x - x^* \rangle \}.$

<u>Rem</u>: recover the gradient when the sub-gradient is a singleton

Fermat's rule: first order condition

Theorem

A point x^* is a minimum of a (proper, closed) convex function $f:\mathbb{R}^d\to\mathbb{R}$ if and only if $0\in\partial f(x^*)$

<u>Proof</u>: use the definition of sub-gradients:

▶ 0 is a sub-gradient of f at x^* if and only if $\forall x \in \mathbb{R}^d, f(x) \ge f(x^*) + \langle 0, x - x^* \rangle$

Fermat's rule: first order condition

Theorem

A point x^* is a minimum of a (proper, closed) convex function $f:\mathbb{R}^d\to\mathbb{R}$ if and only if $0\in\partial f(x^*)$

Proof: use the definition of sub-gradients:

▶ 0 is a sub-gradient of f at x^* if and only if $\forall x \in \mathbb{R}^d, f(x) \ge f(x^*) + \langle 0, x - x^* \rangle$

Rem: correspond to a "horizontal" tangent

Soft-Thresholding

Closed form solution for 1D-problem (p = 1): Soft-Thresholding

$$\begin{split} \eta_{\mathrm{ST},\lambda}(y) &:= \operatorname*{arg\,min}_{\beta \in \mathbb{R}} \left(\frac{(y-\beta)^2}{2} + \lambda |\beta| \right) \\ &= \operatorname{sign}(y)(|y| - \lambda)_+ \\ \text{with } (\cdot)_+ &:= \max(0, \cdot) \end{split}$$

<u>Proof</u>: sub-differential of $|\cdot|$ + Fermat's rule

Soft-Thresholding

Closed form solution for 1D-problem (p = 1): Soft-Thresholding

$$\begin{split} \eta_{\mathrm{ST},\lambda}(y) &:= \operatorname*{arg\,min}_{\beta \in \mathbb{R}} \left(\frac{(y-\beta)^2}{2} + \lambda |\beta| \right) \\ &= \operatorname{sign}(y)(|y| - \lambda)_+ \\ \text{with } (\cdot)_+ &:= \max(0, \cdot) \end{split}$$

<u>Proof</u>: sub-differential of $|\cdot| +$ Fermat's rule

Coordinate descent update: (closed-form)

$$\beta_j \leftarrow \eta_{\mathrm{ST}, \frac{\lambda}{\|\mathbf{x}_j\|^2}} \left(\beta_j - \frac{\mathbf{x}_j^\top (X\beta - y)}{\|\mathbf{x}_j\|^2} \right)$$

Table of Contents

Motivation - notation

Optimization and convexity reminders

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

Dual problem Kim et al. (2007)

Primal function :
$$P_{\lambda}(\beta) = \frac{1}{2} \|y - X\beta\|^2 + \lambda \|\beta\|_1$$

Dual problem : $\hat{\theta}^{(\lambda)} = \underset{\theta \in \Delta_X}{\operatorname{arg\,max}} \underbrace{\frac{1}{2} \|y\|^2 - \frac{\lambda^2}{2} \|\theta - \frac{y}{\lambda}\|^2}_{=D_{\lambda}(\theta)}$
Dual feasible set : $\Delta_X = \{\theta \in \mathbb{R}^n \ : \ |\mathbf{x}_j^{\mathsf{T}}\theta| \le 1, \forall j \in [p]\}$

- $\Delta_X = \{ \theta \in \mathbb{R}^n : \|X^\top \theta\|_{\infty} \leq 1 \}$ is a polyhedral set, *i.e.*, a finite intersection of closed half-spaces
- The (unique) dual solution is the **projection** of y/λ over Δ_X :

$$\hat{\theta}^{(\lambda)} = \operatorname*{arg\,min}_{\theta \in \Delta_X} \left\| \frac{y}{\lambda} - \theta \right\|^2 := \Pi_{\Delta_X} \left(\frac{y}{\lambda} \right)$$

Sketch of proof (in two slides)

Geometric interpretation

 $\frac{y}{\lambda}$

The dual optimal solution is the projection of y/λ over the dual feasible set $\Delta_X = \left\{ \theta \in \mathbb{R}^n : \|X^\top \theta\|_{\infty} \leq 1 \right\} : \hat{\theta}^{(\lambda)} = \prod_{\Delta_X} (y/\lambda)$

0
Geometric interpretation

 $\frac{y}{\lambda}$

The dual optimal solution is the projection of y/λ over the dual feasible set $\Delta_X = \left\{ \theta \in \mathbb{R}^n : \|X^\top \theta\|_{\infty} \leq 1 \right\} : \hat{\theta}^{(\lambda)} = \Pi_{\Delta_X}(y/\lambda)$

Geometric interpretation

The dual optimal solution is the projection of y/λ over the dual feasible set $\Delta_X = \left\{ \theta \in \mathbb{R}^n : \|X^\top \theta\|_{\infty} \leq 1 \right\} : \hat{\theta}^{(\lambda)} = \Pi_{\Delta_X}(y/\lambda)$

Sketch of proof for the dual formulation

$$\min_{\beta \in \mathbb{R}^p} \underbrace{\frac{1}{2} \|y - X\beta\|^2}_{g(y - X\beta)} + \lambda \underbrace{\|\beta\|_1}_{\Omega(\beta)} \Leftrightarrow \min_{\beta \in \mathbb{R}^p, z \in \mathbb{R}^n} \begin{cases} g(z) + \lambda \Omega(\beta) \\ \text{s.t.} \quad z = y - X\beta \end{cases}$$

Lagrangian : $\mathcal{L}(z,\beta,\theta) := g(z) + \lambda \Omega(\beta) + \lambda \theta^{\top} (y - X\beta - z).$

Find a Lagrangian saddle point $(z^{\star}, \hat{\beta}^{(\lambda)}, \hat{\theta}^{(\lambda)})$ (Strong duality):

$$\begin{split} \min_{\boldsymbol{\beta} \in \mathbb{R}^{p}, z \in \mathbb{R}^{n}} \max_{\boldsymbol{\theta} \in \mathbb{R}^{n}} \mathcal{L}(z, \boldsymbol{\beta}, \boldsymbol{\theta}) &= \max_{\boldsymbol{\theta} \in \mathbb{R}^{n}} \min_{\boldsymbol{\beta} \in \mathbb{R}^{p}, z \in \mathbb{R}^{n}} \mathcal{L}(z, \boldsymbol{\beta}, \boldsymbol{\theta}) = \\ \max_{\boldsymbol{\theta} \in \mathbb{R}^{n}} \left\{ \min_{z \in \mathbb{R}^{n}} [g(z) - \lambda \boldsymbol{\theta}^{\top} z] + \min_{\boldsymbol{\beta} \in \mathbb{R}^{p}} [\lambda \Omega(\boldsymbol{\beta}) - \lambda \boldsymbol{\theta}^{\top} X \boldsymbol{\beta}] + \lambda \boldsymbol{\theta}^{\top} y \right\} = \\ \max_{\boldsymbol{\theta} \in \mathbb{R}^{n}} \left\{ -g^{*}(\lambda \boldsymbol{\theta}) - \lambda \Omega^{*}(X^{\top} \boldsymbol{\theta}) + \lambda \boldsymbol{\theta}^{\top} y \right\} \end{split}$$

Provided a few conjugate properties, it is the formulation asserted

Fenchel conjugation

For any $g: \mathbb{R}^n \to \mathbb{R}$, the Fenchel conjugate g^* is defined as

$$g^*(z) = \sup_{x \in \mathbb{R}^n} x^\top z - g(x)$$

If
$$g(\cdot) = \|\cdot\|^2/2$$
 then $g^*(\cdot) = g(\cdot)$

• If $g(\cdot) = \Omega(\cdot)$ is a norm, then $g^*(\cdot) = \iota_{\mathcal{B}_*(0,1)}(\cdot)$, *i.e.*, it is the indicator function of the dual norm unit ball, where the **dual** norm Ω^* is defined by:

$$\Omega^*(z) = \sup_{x: \ \Omega(x) \leq 1} x^\top z = \iota^*_{\mathcal{B}(0,1)}$$

and

$$\iota_{\mathcal{B}}(x) = \begin{cases} 0 & \text{if } x \in \mathcal{B} \\ +\infty & \text{otherwise} \end{cases}, \text{ where } \mathcal{B} = \{x \in \mathbb{R}^n : \Omega(x) \leq 1\}$$

Fermat rule / KKT conditions

- Primal solution : $\hat{\beta}^{(\lambda)} \in \mathbb{R}^p$
- Dual solution : $\hat{\theta}^{(\lambda)} \in \Delta_X \subset \mathbb{R}^n$

Primal/Dual link:
$$y = X \hat{\beta}^{(\lambda)} + \lambda \hat{\theta}^{(\lambda)}$$

Necessary and sufficient optimality conditions:

$$\mathsf{KKT}/\mathsf{Fermat:} \quad \forall j \in [p], \ \mathbf{x}_j^\top \hat{\theta}^{(\lambda)} \in \begin{cases} \operatorname{sign}(\hat{\beta}_j^{(\lambda)}) \} & \text{if} \quad \hat{\beta}_j^{(\lambda)} \neq 0, \\ [-1,1] & \text{if} \quad \hat{\beta}_j^{(\lambda)} = 0. \end{cases}$$

(Sketch of proof next slide)

<u>"Mother" of safe rules</u>: $(0, \frac{y}{\lambda}) \in \mathbb{R}^p \times \mathbb{R}^n$ is a primal/dual solution whenever $\lambda \ge \|X^\top y\|_{\infty} =: \lambda_{\max}$, (all β_j 's screened-out!)

Proof Fermat/KKT + primal/dual link

Lagrangian :
$$\mathcal{L}(z,\beta,\theta) := \underbrace{\frac{1}{2} \|z\|^2}_{g(z)} + \lambda \underbrace{\|\beta\|_1}_{\Omega(\beta)} + \lambda \theta^\top (y - X\beta - z).$$

A saddle point $(z^{\star}, \hat{\beta}^{(\lambda)}, \hat{\theta}^{(\lambda)})$ of the Lagrangian satisfies:

$$\begin{cases} 0 &= \frac{\partial \mathcal{L}}{\partial z}(z^{\star}, \hat{\beta}^{(\lambda)}, \hat{\theta}^{(\lambda)}) = \nabla g(z^{\star}) = z^{\star} - \lambda \hat{\theta}^{(\lambda)}, \\ 0 &\in \partial \mathcal{L}(z^{\star}, \cdot, \hat{\theta}^{(\lambda)})(\hat{\beta}^{(\lambda)}) = -\lambda X^{\top} \hat{\theta}^{(\lambda)} + \lambda \partial \Omega(\hat{\beta}^{(\lambda)}) \\ 0 &= \frac{\partial \mathcal{L}}{\partial \theta}(z^{\star}, \hat{\beta}^{(\lambda)}, \hat{\theta}^{(\lambda)}) = y - X \hat{\beta}^{(\lambda)} - z^{\star}. \end{cases}$$

Hence, $y - X\hat{\beta}^{(\lambda)} = z^{\star} = \lambda\hat{\theta}^{(\lambda)}$ and $X^{\top}\hat{\theta}^{(\lambda)} \in \partial\Omega(\hat{\beta}^{(\lambda)})$ so

 $\forall j \in [p], \quad \mathbf{x}_j^\top \hat{\theta}^{(\lambda)} \in \partial| \cdot |(\hat{\beta}_j^{(\lambda)}) \text{ (separability)}$

Geometric interpretation (II)

A simple dual (feasible) point: $\frac{y}{\lambda_{\max}} \in \Delta_X$ where $\lambda_{\max} = \|X^\top y\|_{\infty}$ $\frac{y}{\lambda}$ $\frac{y}{\lambda_{\max}}$ $\Pi_{\Delta_X}\left(\frac{y}{\lambda}\right)$ Δ_X

Table of Contents

Motivation - notation

Optimization and convexity reminders

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

Safe screening rules El Ghaoui et al. (2012)

Screening thanks to Fermat's Rule:

If
$$|\mathbf{x}_j^\top \hat{\theta}^{(\lambda)}| < 1$$
 then, $\hat{\beta}_j^{(\lambda)} = 0$

<u>Beware:</u> $\hat{\theta}^{(\lambda)}$ is **unknown** so this not practical

Consider instead a safe region $C \subset \mathbb{R}^n$ *i.e.*, $C \ni \hat{\theta}^{(\lambda)}$:

safe rule : If
$$\sup_{\theta \in \mathcal{C}} |\mathbf{x}_j^\top \theta| < 1$$
 then $\hat{\beta}_j^{(\lambda)} = 0$ (*)

Consequence: if safe rule satisfied, \mathbf{x}_j can be "safely removed"

Safe screening rules El Ghaoui et al. (2012)

Screening thanks to Fermat's Rule:

If
$$|\mathbf{x}_j^\top \hat{\theta}^{(\lambda)}| < 1$$
 then, $\hat{\beta}_j^{(\lambda)} = 0$

<u>Beware:</u> $\hat{\theta}^{(\lambda)}$ is **unknown** so this not practical

Consider instead a safe region $\mathcal{C} \subset \mathbb{R}^n$ *i.e.*, $\mathcal{C} \ni \hat{\theta}^{(\lambda)}$:

safe rule : If
$$\sup_{\theta \in \mathcal{C}} |\mathbf{x}_j^\top \theta| < 1$$
 then $\hat{\beta}_j^{(\lambda)} = 0$ (*)

Consequence: if safe rule satisfied, x_j can be "safely removed"

ightarrow as possible containing $\hat{ heta}^{(\lambda)}$

Goal: find
$$C$$

• with $\begin{cases} \mathbb{R}^n & \mapsto \mathbb{R}^+ \\ \mathbf{x} & \to \sup_{\theta \in C} |\mathbf{x}^\top \theta| \end{cases}$ cheap to compute

Safe sphere rules

Let $\mathcal{C} = B(c, r)$ be a ball of center $c \in \mathbb{R}^n$ and radius r > 0, then

$$\sup_{\theta \in \mathcal{C}} |\mathbf{x}^{\top} \theta| = |\mathbf{x}^{\top} c| + r \|\mathbf{x}\|$$

safe sphere rule:

$$\left| \begin{array}{l} \mbox{If } |\mathbf{x}_j^\top c| + r \|\mathbf{x}_j\| < 1 \mbox{ then } \hat{\beta}_j^{(\lambda)} = 0 \end{array} \right|$$

Screening cost:

- one dot product in \mathbb{R}^n
- norm computation "free": pre computed / normalized

New objective:

- find r as small as possible
- find c as close to $\hat{\theta}^{(\lambda)}$ as possible

Static safe rules: El Ghaoui et al. (2012)

Properties of static safe rules

Interest: can be useful prior any optimization (only λ_{max} needed)

$$\begin{array}{l} \textbf{Static safe region: } \mathcal{C} = B(c,r) = B(y/\lambda, \|y/\lambda_{\max} - y/\lambda\|) \\ \textbf{Static safe rule: } \|f\|\mathbf{x}_{j}^{\top}y\| < \lambda \left(1 - \left\|\frac{y}{\lambda_{\max}} - \frac{y}{\lambda}\right\|\|\mathbf{x}_{j}\|\right) \ \textbf{then } \hat{\beta}_{j}^{(\lambda)} = 0 \end{array}$$

<u>Statistical interpretation</u>: static screening = correlation screening for variable selection: "If $|\mathbf{x}_{j}^{\top}y|$ small, discard \mathbf{x}_{j} " (for $||\mathbf{x}_{j}|| = 1$):

If
$$|\mathbf{x}_j^\top y| < C_{X,y}$$
 then $\hat{eta}_j^{(\lambda)} = 0$

<u>Limit</u>: static screening **useless** for small λ 's , *i.e.*, **no feature** can be screened-out

$$\frac{\lambda}{\lambda_{\max}} \leqslant C'_{X,y} = \min_{j \in [p]} \left(\frac{1 + |\mathbf{x}_j^\top y| / (\|\mathbf{x}_j\| \|y\|)}{1 + \lambda_{\max} / (\|\mathbf{x}_j\| \|y\|)} \right)$$

Dynamic safe rules Bonnefoy et al. (2014)

Dynamic safe rules Bonnefoy et al. (2014)

Dynamic safe rules Bonnefoy et al. (2014)

Dynamic safe rule

Dynamic rules: build iteratively $\theta_k \in \Delta_X$, as the solver proceeds to get refined safe rules Bonnefoy *et al.* (2014, 2015)

Remind link at optimum: $\lambda \hat{\theta}^{(\lambda)} = y - X \hat{\beta}^{(\lambda)}$ Current residual for primal point β_k : $\rho_k = y - X \beta_k$

<u>Dual candidate</u>: choose θ_k proportional to the residual

$$\begin{split} \theta_k = & \alpha_k \rho_k, \\ \text{where} \quad \alpha_k = \min \Big[\max \left(\frac{y^\top \rho_k}{\lambda \left\| \rho_k \right\|^2}, \frac{-1}{\|X^\top \rho_k\|_\infty} \right), \frac{1}{\|X^\top \rho_k\|_\infty} \Big]. \end{split}$$

<u>Motivation</u>: projecting over the convex set $\Delta_X \cap \text{Span}(\rho_k)$ is "relatively" cheap (cost: p dot products in \mathbb{R}^n)

Creating dual points: project on a segment

Limits of previous dynamic rules

For $B(c,r) = B(\theta_k, r_k)$ with $r_k = \|\theta_k - y/\lambda\|$, the radius does not converge to zero, even when $\beta_k \to \hat{\beta}^{(\lambda)}$ and $\theta_k \to \hat{\theta}^{(\lambda)}$ (converging solver). The limiting safe sphere is

Limits of previous dynamic rules

For $B(c,r) = B(\theta_k, r_k)$ with $r_k = \|\theta_k - y/\lambda\|$, the radius does not converge to zero, even when $\beta_k \to \hat{\beta}^{(\lambda)}$ and $\theta_k \to \hat{\theta}^{(\lambda)}$ (converging solver). The limiting safe sphere is

Limits of previous dynamic rules

For $B(c,r) = B(\theta_k, r_k)$ with $r_k = \|\theta_k - y/\lambda\|$, the radius does not converge to zero, even when $\beta_k \to \hat{\beta}^{(\lambda)}$ and $\theta_k \to \hat{\theta}^{(\lambda)}$ (converging solver). The limiting safe sphere is

Duality Gap properties

- Primal objective: P_{λ} Primal solution: $\hat{\beta}^{(\lambda)} \in \mathbb{R}^p$
- Dual objective: D_{λ} Primal solution: $\hat{\theta}^{(\lambda)} \in \Delta_X \subset \mathbb{R}^n$,

Duality gap: for any $\beta \in \mathbb{R}^p$, $\theta \in \Delta_X$, $G_{\lambda}(\beta, \theta) = P_{\lambda}(\beta) - D_{\lambda}(\theta)$

$$G_{\lambda}(\beta,\theta) = \frac{1}{2} \|X\beta - y\|^{2} + \lambda \|\beta\|_{1} - \left(\frac{1}{2} \|y\|^{2} - \frac{\lambda^{2}}{2} \|\theta - \frac{y}{\lambda}\|^{2}\right)$$

Strong duality: for any $\beta \in \mathbb{R}^p, \theta \in \Delta_X$,

$$D_{\lambda}(\theta) \leq D_{\lambda}(\hat{\theta}^{(\lambda)}) = P_{\lambda}(\hat{\beta}^{(\lambda)}) \leq P_{\lambda}(\beta)$$

Consequences:

- $G_{\lambda}(\beta, \theta) \ge 0$, for any $\beta \in \mathbb{R}^p, \theta \in \Delta_X$ (weak duality)
- $G_{\lambda}(\beta, \theta) \leqslant \epsilon \Rightarrow P_{\lambda}(\beta) P_{\lambda}(\hat{\beta}^{(\lambda)}) \leqslant \epsilon \text{ (stopping criterion!)}$

Table of Contents

Motivation - notation

Optimization and convexity reminders

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

Gap Safe sphere

For any $\beta \in \mathbb{R}^p$, $\theta \in \Delta_X$ $G_{\lambda}(\beta, \theta) = \frac{1}{2} \|X\beta - y\|^2 + \lambda \|\beta\|_1 - \left(\frac{1}{2} \|y\|^2 - \frac{\lambda^2}{2} \left\|\theta - \frac{y}{\lambda}\right\|^2\right)$

Gap Safe ball: $B(\theta, r_{\lambda}(\beta, \theta))$, where $r_{\lambda}(\beta, \theta) = \sqrt{2G_{\lambda}(\beta, \theta)}/\lambda$

<u>Rem</u>: If $\beta_k \to \hat{\beta}^{(\lambda)}$ and $\theta_k \to \hat{\theta}^{(\lambda)}$ then $G_{\lambda}(\beta_k, \theta_k) \to 0$: a converging solver leads to a converging safe rule, *i.e.*, the limiting safe sphere is $\{\hat{\theta}^{(\lambda)}\}$

Sketch of proof next slide

The Gap safe sphere is safe

- $D_{\lambda}(\hat{\theta}^{(\lambda)}) \leq P_{\lambda}(\beta)$ for any β (weak Duality)
- D_{λ} is λ^2 -strongly concave so for any $\theta_1, \theta_2 \in \mathbb{R}^n$,

$$D_{\lambda}(\theta_{1}) \leq D_{\lambda}(\theta_{2}) + \langle \nabla D_{\lambda}(\theta_{2}), \theta_{1} - \theta_{2} \rangle - \frac{\lambda^{2}}{2} \|\theta_{1} - \theta_{2}\|_{2}^{2}$$

+ $\hat{ heta}^{(\lambda)}$ maximizes D_{λ} over Δ_X , so Fermat's rule yields

$$\forall \theta \in \Delta_X, \qquad \left\langle \nabla D_{\lambda}(\hat{\theta}^{(\lambda)}), \theta - \hat{\theta}^{(\lambda)} \right\rangle \leqslant 0$$

To conclude, for any $\theta \in \Delta_X$:

$$\frac{\lambda^2}{2} \left\| \theta - \hat{\theta}^{(\lambda)} \right\|_2^2 \leq D_\lambda(\hat{\theta}^{(\lambda)}) - D_\lambda(\theta) + \langle \nabla D_\lambda(\hat{\theta}^{(\lambda)}), \theta - \hat{\theta}^{(\lambda)} \rangle \\ \leq P_\lambda(\beta) - D_\lambda(\theta)$$

Dynamic safe sphere Bonnefoy et al. (2014)

$$\mathcal{C} = B(c, r) \qquad r = 0$$

Table of Contents

Motivation - notation

Optimization and convexity reminders

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

Algorithm: Full coordinate descent

Input : $X, y, \epsilon, K, (\lambda_0 = \lambda_{\max}, \dots, \lambda_{T-1})$ Initialization: k = 0 and $\beta^{\lambda_0} = 0 \in \mathbb{R}^p$

Output : $\beta^{\lambda_0}, \ldots, \beta^{\lambda_{T-1}}$

Algorithm: Full coordinate descent

Input : $X, y, \epsilon, K, (\lambda_0 = \lambda_{\max}, \dots, \lambda_{T-1})$ Initialization: k = 0 and $\beta^{\lambda_0} = 0 \in \mathbb{R}^p$ for $t \in [T-1]$ do **Output :** $\beta^{\lambda_0}, \ldots, \beta^{\lambda_{T-1}}$

Algorithm: Full coordinate descent

Input : $X, y, \epsilon, K, (\lambda_0 = \lambda_{\max}, \dots, \lambda_{T-1})$ Initialization: k = 0 and $\beta^{\lambda_0} = 0 \in \mathbb{R}^p$ for $t \in [T-1]$ do $\beta \leftarrow \beta^{\lambda_{t-1}}$ // warm start

Output : $\beta^{\lambda_0}, \ldots, \beta^{\lambda_{T-1}}$

Algorithm: Full coordinate descent

Input : $X, y, \epsilon, K, (\lambda_0 = \lambda_{\max}, \dots, \lambda_{T-1})$ Initialization: k = 0 and $\beta^{\lambda_0} = 0 \in \mathbb{R}^p$ for $t \in [T-1]$ do $\beta \leftarrow \beta^{\lambda_{t-1}}$ // warm start for $k \in [K]$ do **Output :** $\beta^{\lambda_0}, \ldots, \beta^{\lambda_{T-1}}$

Algorithm: Full coordinate descent

```
Input : X, y, \epsilon, K, (\lambda_0 = \lambda_{\max}, \dots, \lambda_{T-1})
Initialization: k = 0 and \beta^{\lambda_0} = 0 \in \mathbb{R}^p
for t \in [T-1] do
     \beta \leftarrow \beta^{\lambda_{t-1}}
                                                                                             // warm start
      for k \in [K] do
            if k \mod 10 = 0 then
               Construct \theta \in \Delta_X
               if G_{\lambda_t}(\beta, \theta) \leq \epsilon
                                                                            // dual gap evaluation
                 then
             \begin{vmatrix} \beta^{\lambda_t} \leftarrow \beta \\ break \end{vmatrix}
```

Output : $\beta^{\lambda_0}, \ldots, \beta^{\lambda_{T-1}}$
Coordinate descent for full path

Algorithm: Full coordinate descent **Input** : $X, y, \epsilon, K, (\lambda_0 = \lambda_{\max}, \dots, \lambda_{T-1})$ Initialization: k = 0 and $\beta^{\lambda_0} = 0 \in \mathbb{R}^p$ for $t \in [T-1]$ do $\beta \leftarrow \beta^{\lambda_{t-1}}$ // warm start for $k \in [K]$ do if $k \mod 10 = 0$ then $\begin{array}{c|c} \mathsf{Construct} \ \theta \in \Delta_X \\ \mathsf{if} \ G_{\lambda_t}(\beta, \theta) \leqslant \epsilon \end{array}$ // dual gap evaluation then $\begin{vmatrix} \beta^{\lambda_t} \leftarrow \beta \\ \mathbf{break} \end{vmatrix}$ for $j \in [p]$ do $\begin{vmatrix} \beta_j \leftarrow \eta_{\text{ST}, \frac{\lambda}{\|\mathbf{x}_i\|^2}} \left(\beta_j - \frac{\mathbf{x}_j^\top (X\beta - y)}{\|\mathbf{x}_j\|^2} \right) & // \text{ soft-threshold} \end{vmatrix}$ **Output :** $\beta^{\lambda_0}, \ldots, \beta^{\lambda_{T-1}}$

Coordinate descent for full path

Algorithm: Full coordinate descent

Gap safe rules: fraction non-screened out

Figure: Lasso on the Leukemia (dense data with n = 72 observations and p = 7129 features). fraction of the variables that are active. Each line corresponds to a fixed number of iterations for which the algorithm is run

Computing time for standard grid with T = 100

Figure: Lasso on the Leukemia dataset (dense data, n=72 observations, p=7129 features). Computation times needed to solve the Lasso regression path to desired accuracy for a grid of λ from $\lambda_{\rm max}$ to $\lambda_{\rm max}/10^3$

Computing time for standard grid with T = 100

Figure: Lasso on financial dataset E2006-log1p (sparse data with n=16~087 observations and p=1~668~737 features). Computation times needed to solve the Lasso regression path to desired accuracy for a grid of λ from $\lambda_{\rm max}$ to $\lambda_{\rm max}/20$

New safe screening rule based on duality gap for the Lasso

Computationally efficient, e.g., for coordinate descent

- New safe screening rule based on duality gap for the Lasso
- Computationally efficient, e.g., for coordinate descent
- ▶ Generalize well to other penalties: Elastic Net, Group-Lasso, Sparse Group-Lasso $(\ell_1 + \ell_1/\ell_2)$

- New safe screening rule based on duality gap for the Lasso
- Computationally efficient, e.g., for coordinate descent
- Generalize well to other penalties: Elastic Net, Group-Lasso, Sparse Group-Lasso $(\ell_1 + \ell_1/\ell_2)$
- ▶ Generalize well to other data fitting terms: *e.g.*, logistic regression, Concomitant Lasso, etc.

- New safe screening rule based on duality gap for the Lasso
- Computationally efficient, e.g., for coordinate descent
- Generalize well to other penalties: Elastic Net, Group-Lasso, Sparse Group-Lasso $(\ell_1 + \ell_1/\ell_2)$
- Generalize well to other data fitting terms: *e.g.*, logistic regression, Concomitant Lasso, etc.
- Combining safe rules ideas with active sets strategies, cf. Jonhson and Guestrin (2015,2016)

- New safe screening rule based on duality gap for the Lasso
- Computationally efficient, e.g., for coordinate descent
- Generalize well to other penalties: Elastic Net, Group-Lasso, Sparse Group-Lasso $(\ell_1 + \ell_1/\ell_2)$
- Generalize well to other data fitting terms: *e.g.*, logistic regression, Concomitant Lasso, etc.
- Combining safe rules ideas with active sets strategies, cf. Jonhson and Guestrin (2015,2016)

More info : papers / code

Papers:

- ICML 2015 (Lasso case)
- NIPS 2015 (General loss + multi-task)
- NIPS 2016 (Sparse-Group Lasso)
- NCMIP 2017 (Concomitant Lasso)
- JMLR 201? (Journal version: synthesis)

Codes:

- Python code on-line: https://github.com/EugeneNdiaye
- pull requests (#5075) (#7853) on sklearn

Powered with MooseTeX

Références I

- A. Bonnefoy, V. Emiya, L. Ralaivola, and R. Gribonval. A dynamic screening principle for the lasso. In *EUSIPCO*, 2014.
- A. Bonnefoy, V. Emiya, L. Ralaivola, and R. Gribonval.
 Dynamic screening: accelerating first-order algorithms for the Lasso and Group-Lasso.

IEEE Trans. Signal Process., 63(19):20, 2015.

- D. Bertsimas, A. King, and R. Mazumder.
 Best subset selection via a modern optimization lens.
 Ann. Statist., 44(2):813–852, 2016.
- P. J. Bickel, Y. Ritov, and A. B. Tsybakov.
 Simultaneous analysis of Lasso and Dantzig selector.
 Ann. Statist., 37(4):1705–1732, 2009.
- A. Beck and M. Teboulle.

A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM J. Imaging Sci.*, 2(1):183–202, 2009.

Références II

- S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput., 20(1):33–61, 1998.
- E. J. Candès, M. B. Wakin, and S. P. Boyd.
 Enhancing sparsity by reweighted l₁ minimization.
 J. Fourier Anal. Applicat., 14(5-6):877–905, 2008.
- A. S. Dalalyan, M. Hebiri, and J. Lederer.
 On the prediction performance of the Lasso.
 Bernoulli, 23(1):552–581, 2017.
- B. Efron, T. J. Hastie, I. M. Johnstone, and R. Tibshirani. Least angle regression.

Ann. Statist., 32(2):407–499, 2004. With discussion, and a rejoinder by the authors.

L. El Ghaoui, V. Viallon, and T. Rabbani.

Safe feature elimination in sparse supervised learning.

J. Pacific Optim., 8(4):667-698, 2012.

Références III

- O. Fercoq, A. Gramfort, and J. Salmon.
 Mind the duality gap: safer rules for the lasso.
 In *ICML*, pages 333–342, 2015.
- J. Friedman, T. J. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization.
 Ann. Appl. Stat., 1(2):302–332, 2007.
- C. Giraud.

Introduction to high-dimensional statistics, volume 138. CRC Press, 2014.

• T. B. Johnson and C. Guestrin.

BLITZ: A principled meta-algorithm for scaling sparse optimization. In *ICML*, pages 1171–1179, 2015.

• T. B. Johnson and C. Guestrin.

Unified methods for exploiting piecewise linear structure in convex optimization.

```
In NIPS, pages 4754-4762, 2016.
```

Références IV

- S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky.
 An interior-point method for large-scale l₁-regularized least squares.
 IEEE J. Sel. Topics Signal Process., 1(4):606–617, 2007.
- J. Mairal and B. Yu.

Complexity analysis of the lasso regularization path. In *ICML*, pages 353–360, 2012.

B. K. Natarajan.

Sparse approximate solutions to linear systems. *SIAM J. Comput.*, 24(2):227–234, 1995.

- M. R. Osborne, B. Presnell, and B. A. Turlach.
 A new approach to variable selection in least squares problems.
 IMA J. Numer. Anal., 20(3):389–403, 2000.
- R. Tibshirani, J. Bien, J. Friedman, T. J. Hastie, N. Simon, J. Taylor, and R. J. Tibshirani.

Strong rules for discarding predictors in lasso-type problems.

J. R. Stat. Soc. Ser. B Stat. Methodol., 74(2):245–266, 2012.

Références V

R. Tibshirani.

Regression shrinkage and selection via the lasso.

J. R. Stat. Soc. Ser. B Stat. Methodol., 58(1):267-288, 1996.

• R. J. Tibshirani.

The lasso problem and uniqueness. *Electron. J. Stat.*, 7:1456–1490, 2013.

P. Tseng.

Convergence of a block coordinate descent method for nondifferentiable minimization.

J. Optim. Theory Appl., 109(3):475–494, 2001.

• J. Wang, J. Zhou, P. Wonka, and J. Ye.

Lasso screening rules via dual polytope projection. In *NIPS*, pages 1070–1078, 2013.

► H. Zou.

The adaptive lasso and its oracle properties.

J. Amer. Statist. Assoc., 101(476):1418-1429, 2006.

Références VI

• C.-H. Zhang and T. Zhang.

A general theory of concave regularization for high-dimensional sparse estimation problems.

Statist. Sci., 27(4):576–593, 2012.

Lasso theory : (fairly) well understood

Gaussian model: $y = X\beta^* + \sigma\varepsilon$, with $\|\beta^*\| = s$

Theorem Bickel *et al.* (2009), Dalalyan *et al.* (2017), Giraud (2014) For Gaussian noise model with X satisfying the "Restricted Eigenvalue" property and $\lambda = 2n\sigma\sqrt{\frac{2\log(p/\delta)}{n}}$, then

$$\frac{1}{n} \left\| X(\beta^* - \hat{\beta}^{(\lambda)}) \right\|^2 \leq \frac{18}{\kappa_s^2} \frac{\sigma^2 s}{n} \log\left(\frac{p}{\delta}\right)$$

with probability $1-\delta$, where $\hat{eta}^{(\lambda)}$ is a Lasso solution

<u>Rem:</u> Optimal rate in the minimax sense (up to constant/log term)

<u>Rem:</u> under the "Restricted Eigenvalue" property, κ_s^2 is a measure of strong convexity of the (quadratic part of the) objective function obtained when extracting s columns of X

EDDP Wang *et al.* (2013) can remove useful variables

