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Image N x N
» Pixel : i = (i1, 4) € [1, N]?, Image : f(i) € R.
» || - || : Euclidean Norm

Noisy Observation
> Y(i) = f(i) + o W(i)
» W (i) i.i.d. standard Gaussian noise, known o

» Other noise possible

Estimate
» Estimate f(7) from Y

» Non local behavior possible ...




Kernel Smoothing Method
General Method

» Estimate f(7) through a local averaging :
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Kernel Smoothing Method
General Method

» Estimate f(¢) through a local averaging :

fiy=" 3 0uxY(k)

ke[1,N]?

» The weights 6; j can (will) depend on Y

Classical Kernel
K (i — ki, ia — ko)
2wy K — Ky, i — k)

> 0k = (no dependency on Y)

. . . (52442 2
» Example : Gaussian Kernel K, (i, 1) = e~ (A +2)/2h




Data Dependant Kernel

Bilateral filtering
> 0 L= Kh(’il — kl, 19 — kz) XK;L/(Y(il, ig) — Y(]Cl, kg))
T g Kali — ki — R) < K (Y (i, ) — Y (K] K))

» Gaussian Version :

_ (i1 =k1)2+(ig—kp)? (Y (i1,i9) = Y(ky k9))?
e 212 X e 242
O = (i1 —K))2+ (i K))2 (Y (it ia)— Y (K, k)2
e 212 X e 2n/2
DK K

» Intuition : Average values that are
close in both distance and values

> Issue : pixel value too local a
feature (to be robust)
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Bilateral filtering
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» Intuition : Average values that are
close in both distance and values

> Issue : pixel value too local a
feature (to be robust)




Patches based Methods
Patch

» A patch = a square sub-image of width w

» P(f)(¢) : patch centered on i in the true image

» P(Y)(7) = P; : patch centered on i in the noisy image
» A less localized version of pixel values : more robust

» Easy reprojection from patch collection P(f) to an image f
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» Very Different Patches , useless : very small
weights
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Searching Zone, Weights and Patches

Patch width : w=3, Searching zone width : R=15

R
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NL-Means |

NL-Means [BCMO05]

» Choose a dissimilarity measure D between patches.
K'(D(P;, Py))
2 K'(D(Pi, Py))

D(P;, Py) = || P; — Pj|| to measure the dissimilarity, a
Gaussian kernel K'(z) = exp(—22/) and a temperature (3.

> Use weights 0, 1, = with
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NL-Means [BCMO05]

» Choose a dissimilarity measure D between patches.
K'(D(P;, Py))
2 K'(D(Pi, Py))

D(P;, Py) = || P; — Pj|| to measure the dissimilarity, a
Gaussian kernel K'(z) = exp(—22/) and a temperature (3.

with

> Use weights 0, =

v

Variations
» Adapt automatically the search zone (Kervrann et al. [KB06])
» Use higher order local approximations (Takeda et al. [TFM07])
» Use different dissimilarity measures (Azzabou et al. [APGO07])

v
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Advantages
» Performance close to “state-of-the-art” methods (in 2005)

» Easy to implement
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Advantages
» Performance close to “state-of-the-art” methods (in 2005)

» Easy to implement

Limits :
» Consistency requires strong hypotheses : stationary and 5—
mixing process (true for textures ...)

» Searching zone = entire image : too slow in practice and no
benefit if R > 21 for common images

» 3 — 0 (temperature) : [BCMO05] 3 = 1202 choice ?




NL-Means Interpretation

Intuitive explanation
» Smoothing on the patch manifold




NL-Means Interpretation

Intuitive explanation
» Smoothing on the patch manifold

Optimized local kernel

» NL-Means induces a
local kernel adapted to
the geometry




NL-Means Interpretation

Intuitive explanation
» Smoothing on the patch manifold

Optimized local kernel

» NL-Means induces a
local kernel adapted to
the geometry

A best local kernel ?
» Can we compare the NL-Means to the best local kernel :

E(If =1I?) < Cargeminz IF(0) =D 0ief (k) + N2 6] 7
i k

v




Statistical Aggregation

Model and preliminary estimators
» Y =f+0W of size N x N.

» {Pj} set of M preliminary estimators of f (obtained
independently).
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Statistical Aggregation

Model and preliminary estimators
» Y =f+0W of size N x N.

» {Pj} set of M preliminary estimators of f (obtained
independently).

Aggregation
» Estimate f as a weighted average j‘ =Py=> ;0P
» Aggregation procedure : way to choose 0 from Y.

Oracle Inequality

» Typical result : “Best” aggregation amongst a class © C RM,
E(lf = JII*) < € inf |If = Pol|* + V(8 0)

» (', © and V depend on the procedure.




Aggregation PAC-Bayesian
Aggregation PAC-Bayesian

» Specific aggregation procedure based on exponential weights.
» Defined from a prior 7 on RM by f = Py_, with

o SIY =Py

e,rz/ 0dr(0).
RM [ h e—%HY—Pm”QdW(Q/) ()

51 Y=Py)?

>W:%Zk6k — }:Z €

k -
=5, e B Pl




Aggregation PAC-Bayesian

Aggregation PAC-Bayesian
» Specific aggregation procedure based on exponential weights.

» Defined from a prior m on RM by f = Py_, with
o BlY=Pol?
6, — / 8dr(6).
" RM fRM e‘%H Y_P9/||2d7r(9/)
) . e—%IIY—Pkll2
ST wReh = =) o e

Oracle Inequality
» Sharp oracle inequality : if the temperature 3 > 4072,

B(If - JIP) <int | [ 1 = Polldp(6) + GC(p,m)
0eRM

K(p,n) : Kullback-Leibler divergence, p : measure on RM




Prior Choice
Error bound and prior

> B(If - FIP) <int | [ I~ PallPdp0) + (o)
6eRM

» Compromise between a localization of p close to the best
“oracle” aggregation Py and a proximity with the prior 7.

» Choose 7 so that this quantity is small “uniformly”...
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Prior Choice
Error bound and prior

> B(If - FIP) <int | [ I~ PallPdp0) + (o)
6eRM

» Compromise between a localization of p close to the best
“oracle” aggregation Py and a proximity with the prior 7.

» Choose 7 so that this quantity is small “uniformly”...

Discrete Prior case
> 1= 4 b gives B — JII2) < inf [If — Pyll* + Flog M.

» As good as the best preliminary estimator...

Sparsifying Prior
» 7 :i.i.d. Student (Dalalyan et al. [DT09]) or Gaussian mixture
> Bound : B(|f — FI) < inf If = Pol> + Cl0llolog M .

» As good as the best “sparse aggregation'...




Patch based aggregation
Patches as preliminary estimators
» Use the patches as preliminary estimators P; = P(Y)(%)
» Only issue : not independent with the observation P(Y)(1).




Patch based aggregation
Patches as preliminary estimators
» Use the patches as preliminary estimators P; = P(Y)(4)
» Only issue : not independent with the observation P(Y)(1).

v

Theorem
» Same flavor than for regular aggregation :

E(IP()(0) — P <A><'>||2>
<in [ (1P = Poll*+ N6 |0]12) dp(6) + 5K (p. )
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Patch based aggregation
Patches as preliminary estimators
> Use the patches as preliminary estimators P; = P(Y)(1%)

» Only issue : not independent with the observation P(Y)(1).

y

Theorem ?
» Same flavor than for regular aggregation :

E(IP()(0) — P <A><'>||2>
<in [ (1P = Poll*+ N6 |0]12) dp(6) + 5K (p. )

> Proof requires either some splitting or some more homework...
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Patch based aggregation
Patches as preliminary estimators
» Use the patches as preliminary estimators P; = P(Y)(7)

» Only issue : not independent with the observation P(Y)(i).

y

Theorem 7
» Same flavor than for regular aggregation :

E(IP()(0) — P <A><'>||2>
<in [ (1P = Poll*+ N6 |0]12) dp(6) + 5K (p. )

> Proof requires either some splitting or some more homework...

v

Patch based priors

» Discrete Uniform (NL-Means) : selection ...

» Sparsifying (Student, Gaussian mixture) : sparse
kernel optimization !




PAC-Bayesian estimate and Monte Carlo
method

The PAC-Bayesian estimate

» High dimensional integral similar to some integrals appearing
in the Bayesian framework...

Important Issue !
Monte Carlo method based on a Langevin diffusion equation

»
>

» Approximate values only... but sufficient precision
» Some convergence issues still under investigation
>

Patch preselection seems to help...




NL Means (31.19 dB) PAC-Bayesien (32.80 dB)

Experimental setting
» Comparison with classic NL-Means with 3 = 1202

» PAC-Bayesian aggregation with Student prior




NL Means (31.19 dB) PAC-Bayesien (32.80 dB)

Experimental setting
» Comparison with classic NL-Means with 3 = 1202

» PAC-Bayesian aggregation with Student prior

Results
» Results on par with NL-Means

» Room for improvement.
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Conclusion

A novel aggregation point of view on the NL-Means

» New look on the exponential weights and the Ly patch
dissimilarity measure

» Stein Unbiased Risk Estimate : a tool in proofs leading to
a new approach for the central patch weight

» Proposition of a new aggregation procedure which is on
par with NL-Means but with (some) theoretical control

» Framework adaptable for other dictionaries




Conclusion

A novel aggregation point of view on the NL-Means

» New look on the exponential weights and the Ly patch
dissimilarity measure

» Stein Unbiased Risk Estimate : a tool in proofs leading to
a new approach for the central patch weight

» Proposition of a new aggregation procedure which is on
par with NL-Means but with (some) theoretical control

» Framework adaptable for other dictionaries

A huge to-do list
» Extend the theorem to the fully dependent case
» Choice of the best prior
» Accelerated convergence of the Monte Carlo chain
> ...
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