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Image, Noise and Estimate

Image N × N
I Pixel : i = (i1, i2) ∈ J1,N K2, Image : f (i) ∈ R.
I ‖ · ‖ : Euclidean Norm

Noisy Observation
I Y (i) = f (i) + σW (i)
I W (i) i.i.d. standard Gaussian noise, known σ
I Other noise possible

Estimate
I Estimate f (i) from Y
I Non local behavior possible ...
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Kernel Smoothing Method
General Method

I Estimate f (i) through a local averaging :

f̂ (i) =
∑

k∈J1,NK2

θi,kY (k)

I The weights θi,k can (will) depend on Y

Classical Kernel

I θi,k = Kh(i1 − k1, i2 − k2)∑
k′1,k′2 Kh(i1 − k ′1, i2 − k ′2)

(no dependency on Y )

I Example : Gaussian Kernel Kh(i1, i2) = e−(i2
1+i2

2 )/2h2
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Data Dependant Kernel

Bilateral filtering

I θi,k = Kh(i1 − k1, i2 − k2)×K ′h′(Y (i1, i2)−Y (k1, k2))∑
k′1,k′2 Kh(i1 − k ′1, i2 − k ′2)×K ′h′(Y (i1, i2)−Y (k ′1, k ′2))

I Gaussian Version :

θi,k = e−
(i1−k1)2+(i2−k2)2

2h2 × e−
(Y (i1,i2)−Y (k1,k2))2

2h′2∑
k′1,k′2 e−

(i1−k′1)2+(i2−k′2)2

2h2 × e−
(Y (i1,i2)−Y (k′1,k

′
2))2

2h′2

I Intuition : Average values that are
close in both distance and values

I Issue : pixel value too local a
feature (to be robust)
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Patches based Methods
Patch

I A patch = a square sub-image of width w
I P(f )(i) : patch centered on i in the true image
I P(Y )(i) = Pi : patch centered on i in the noisy image
I A less localized version of pixel values : more robust
I Easy reprojection from patch collection P(f ) to an image f

Intuition
I Use weights that take into account the patch similarity :

I Patch P to denoise
I Similar Patches, useful : large weights
I Less Similar Patches, less useful : small weights
I Very Different Patches , useless : very small

weights
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Searching Zone, Weights and Patches

Patch width : w=3, Searching zone width : R=15



NL-Means I

NL-Means [BCM05]
I Choose a dissimilarity measure D between patches.

I Use weights θi,k = K ′(D(Pi ,Pk))∑
k K ′(D(Pi ,Pk))

with

D(Pi ,Pk) = ‖Pi − Pk‖ to measure the dissimilarity, a
Gaussian kernel K ′(x) = exp(−x2/β) and a temperature β.

Variations
I Adapt automatically the search zone (Kervrann et al. [KB06])
I Use higher order local approximations (Takeda et al. [TFM07])
I Use different dissimilarity measures (Azzabou et al. [APG07])
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NL-Means II

Advantages
I Performance close to “state-of-the-art” methods (in 2005)
I Easy to implement

Limits :
I Consistency requires strong hypotheses : stationary and β−

mixing process (true for textures . . . )

I Searching zone = entire image : too slow in practice and no
benefit if R ≥ 21 for common images

I β −→ 0 (temperature) : [BCM05] β = 12σ2 choice ?
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NL-Means Interpretation

Intuitive explanation
I Smoothing on the patch manifold

Optimized local kernel

I NL-Means induces a
local kernel adapted to
the geometry

A best local kernel ?
I Can we compare the NL-Means to the best local kernel :

E(‖f − f̂ ‖2) ≤ C arg min
θ

∑
i
|f (i)−

∑
k
θi,k f (k)|2 +N 2σ2‖θ‖2 ?
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Statistical Aggregation

Model and preliminary estimators
I Y = f + σW of size N ×N .
I {Pk} set of M preliminary estimators of f (obtained

independently).

Aggregation
I Estimate f as a weighted average f̂ = Pθ =

∑
k θkPk

I Aggregation procedure : way to choose θk from Y .

Oracle Inequality
I Typical result : “Best” aggregation amongst a class Θ ⊂ RM ,

E(‖f − f̂ ‖2) ≤ C inf
θ∈Θ
‖f − Pθ‖2 + V(θ, σ)

I C , Θ and V depend on the procedure.
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Aggregation PAC-Bayesian
Aggregation PAC-Bayesian

I Specific aggregation procedure based on exponential weights.
I Defined from a prior π on RM by f̂ = Pθπ , with

θπ =
∫

RM

e−
1
β
‖Y−Pθ‖2∫

RM e−
1
β
‖Y−Pθ′‖2

dπ(θ′)
θdπ(θ) .

I π = 1
M
∑

k δk =⇒ f̂ =
∑

k

e−
1
β
‖Y−Pk‖2

∑
k′ e
− 1
β
‖Y−Pk′‖2 Pk .

Oracle Inequality
I Sharp oracle inequality : if the temperature β ≥ 4σ2,

E(‖f − f̂ ‖2) ≤ inf
p

[∫
θ∈RM

‖f − Pθ‖2dp(θ) + βK(p, π)
]

K(p, π) : Kullback-Leibler divergence, p : measure on RM
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Prior Choice
Error bound and prior

I E(‖f − f̂ ‖2) ≤ inf
p

[∫
θ∈RM

‖f − Pθ‖2dp(θ) + βK(p, π)
]
.

I Compromise between a localization of p close to the best
“oracle” aggregation Pθ and a proximity with the prior π.

I Choose π so that this quantity is small “uniformly”...

Discrete Prior case
I π = 1

M
∑

k δk gives E(‖f − f̂ ‖2) ≤ inf
k
‖f − Pk‖2 + β log M .

I As good as the best preliminary estimator...

Sparsifying Prior
I π : i.i.d. Student (Dalalyan et al. [DT09]) or Gaussian mixture
I Bound : E(‖f − f̂ ‖2) ≤ inf

θ∈RM
‖f − Pθ‖2 + Cβ‖θ‖0 log M .

I As good as the best “sparse aggregation’...
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Patch based aggregation
Patches as preliminary estimators

I Use the patches as preliminary estimators Pi = P(Y )(i)
I Only issue : not independent with the observation P(Y )(i0).

Theorem

?

I Same flavor than for regular aggregation :
E(‖P(f )(i)− P(f̂ )(i)‖2)

≤ inf
p

∫
θ∈RM

(
‖P(f )(i)− Pθ‖2 + N 2σ2‖θ‖2

)
dp(θ) + βK(p, π)

I Proof requires either some splitting or some more homework...

Patch based priors

I Discrete Uniform (NL-Means) : selection ...
I Sparsifying (Student, Gaussian mixture) : sparse

kernel optimization !
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PAC-Bayesian estimate and Monte Carlo
method

The PAC-Bayesian estimate
I High dimensional integral similar to some integrals appearing

in the Bayesian framework...
I Important Issue !
I Monte Carlo method based on a Langevin diffusion equation
I Approximate values only... but sufficient precision
I Some convergence issues still under investigation
I Patch preselection seems to help...



Numerical Results (PSNR)

Original Noisy (28.13 dB)

NL Means (31.19 dB) PAC-Bayesien (32.80 dB)

Experimental setting
I Comparison with classic NL-Means with β = 12σ2

I PAC-Bayesian aggregation with Student prior

Results
I Results on par with NL-Means
I Room for improvement.
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Original Noisy (22.12 dB)

NL Means (29.59 dB) PAC-Bayesien (29.46 dB)



Original Noisy (22.21 dB)

NL Means (24.23dB) PAC-Bayesien (26.96 dB)



Conclusion

A novel aggregation point of view on the NL-Means
I New look on the exponential weights and the L2 patch

dissimilarity measure
I Stein Unbiased Risk Estimate : a tool in proofs leading to

a new approach for the central patch weight
I Proposition of a new aggregation procedure which is on

par with NL-Means but with (some) theoretical control
I Framework adaptable for other dictionaries

A huge to-do list
I Extend the theorem to the fully dependent case
I Choice of the best prior
I Accelerated convergence of the Monte Carlo chain
I ...
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