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Heteroscedastic regression

Observations: sequence (z, y;) € R x R obeying

Yt = b*(mt) + S*(mt)£t7 t= 1a ) T

» Conditional mean: b* : RY — R such that E[y|x;] = b*(x;)
» Conditional variance: s* : RY — R such that
Var[y:|z;] = s*(z;)

» Normalized errors: &, such that E[{;|x;] = 0 and
Var[{;|z;] =1 (e.g. Gaussian for simplicity)

< Including the "time-dependent" mean and variance case:
consider [t; ] ]" instead of @, as explanatory variable



Sparsity Assumption

» Estimating b* and s* is ill-posed

» sparsity senario: b* and s* belong to low dimensional spaces

Example: Homoscedastic regression
Ve, b*(z)=I[fi(x),...,fp(x)]B", and s*(z)=o"

< Dictionary {fi,...,f,} of functions from R¢ to R
— Unknown vector (8%,0%) € R? x R, sparse vector 3*

— Sparsity index: i = |B%|p := Zj;l 1(B; # 0) with
it T




Homoscedastic case with known noise level

Regression formulation

Y =X8" +0%¢
Observations: Y =[y,...,yr] €RT
Noise: E=1¢,..., 7] eRT
Design Matrix: X = [fj(x)] € R
T
Coefficients: B = [,Bik, o ,5;} € RP
Standard deviation: s*(x) = o* € RS

REM:
» Y is observed
» X is known or chosen by the statistician
» B* is to be recovered by j



Pioneer methods: homoscedastic, ¢* known

LASSO Tibshirani (1996)
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Oracle inequalities (non-asymptotic bounds) available e.g. Bickel
et al. (2009) for a tuning parameter satisfying A o o,
BUT knowledge of 0* needed!



Homoscedastic case with unknown noise level

Matrix/vector formulation

Y =XpB"+0%¢
Observations: Y =[y,...,yr] e€RT
Noise: E=1¢,..., 7] eRT
Design Matrix: X =[fj(x)] € R
Coefficients: B = [,Bik, e ,5;}T € RP
Standard deviation: s*(zy) = o* € RS

REM:
> Y is observed,
» X is known or chosen by the statistician

» | 3" and o* are to be recovered by B and &




Pioneering methods: homoscedastic, o*

unknown
Scaled-Lasso, Stadler et al. (2010)
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— penalized (Gaussian, negative) log-likelihood minimization
< can be recast in a convex problem (do p:= 1 and ¢ := g)

) pY — Xol3 P
argd)mln < — Tlog(p) + ‘2’2 + )\ijl | X jlol 5] )
P

» equivariant estimator, i.e. if Y < cY, 8% < ¢B*,0* + co*,
then B < ¢B and 6 + c&

» Jointly convex problem but not a simple one (Linear
Programming, etc.)



Pioneering methods: homoscedastic, o*

unknown
Square-Root Lasso Antoniadis (2010) , Belloni et al. (2011)

Sun and Zhang (2012)

~SqgR-Lasso . } Y - Xﬁ| p
B = argﬂmm (TTZ + Azjzl |X:,j|2|ﬁj|)

~SqR-Lasso
Tl xET,

— equivalent to sequentially minimizing the following

- X
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» Can be solved by a Second Order Cone Program (SOCP)
> Not easily extended to the heteroscedastic case

» Extension to matrix completion Klopp (2011)



Objectives

Extending previous works Dalalyan and Chen (2012) , propose a
method for jointly estimating:

» the conditional mean function b*

» the conditional volatility s*

— for the heteroscedastic regression

— without any knowledge on the noise level

Problem re-formulation
Re-parametrize by the inverse of the conditional volatility s*
1 b*(x)

r*(z) = (@) and f*(z) =




Assumptions on the model (1)

Group Sparsity Assumption

For a given family Gi,..., Gk of disjoint subsets of {1,..., p},
there is a vector ¢* € R” such that

[f*(21),....F (z)]T = X",  Card({k: |@f, |, #0}) < K.

Sparse vector:
IENIIIEEE NN NN .
Group Sparse vector:

REM: Note that the groups have not necessarily the same size



Examples of application |

Group sparsity assumption (1)

» Sparse linear model with categorical data
< linear regression with qualitative covariates
< each covariate has several modalities

» Sparse additive model
— f*(x) = f{(m) + ... +fj(zq) ; f; =0 for most j
< Projection on a basis:
f]*(x) ~ 221 ¢€,j1/1£(37)3 group sparsity of ¢ = (W,j)-




Assumptions on the model (I1)

Low dimension volatility assumption

For ¢ given functions rq,...,r, mapping R? into R, there is a
vector a* € RY such that r*(x) = >/, ajri() for almost every
x € R? and S is the linear span of rq, ..., rg.
* * T _ *
[r(z1),...,r"(z7)] = Ra

REM: here and after g < T



Examples of application (I1)

Low dimension volatility assumption

> Block-wise homoscedastic noise
— r* is well approximated by a piecewise constant
function: time series modeling (smooth variations over time),
image processing (neighboring pixels are often corrupted by
noise levels of similar magnitude).
> Periodic noise-level
— r* belongs to the linear span of a few trigonometric
functions: meteorology (seasonal variations), image processing
(electronic disturbance of repeating nature, caused for
instance by an electric motor).




Penalized log-likelihood formulation

> penalized log-likelihood used for defining the group-Lasso
» Tuning parameter: A = (A1,...,Ag) € RE

Introduce the T' x ¢ matrix R = (rg(z¢)), ,
The cost function becomes PL(¢, a):

T 1 T )
- Z log(Rt,: 5 Z th,:a - Xt,:¢)
t=1 t=1

l\.')

+ Z Ak{X::Gk¢Gk|2
k=1

K K
> REM: use penalty > Ai|X. g, dg,|, instead of > Ailog,|,
k=1 k=1
Simon and Tibshirani (2012)



Optimization considerations

» Minimization of PL can be seen as a log-det problem
— But higher computational complexity than Linear
Programming (LP) and SOCP

» Reduce computation cost
< Dantzig Selector arguments;
— First-order conditions:

Vke{l,...,K}, 85 PL(¢p,x) =0
Gy,
vee{l,..., q}, iPL(gb,oz)zO

Oay



First order conditions (1)
» Vke{l,...,K}, 88 PL(¢, r) = 0 implies:

X6 9. ¢,

—X. ¢, (diag( Y)Ra — X ) + A X[ =0
7Gk( Gk’X Gk¢ Gk’2

< True if min | X. g, ¢. g ]2 # 0
— Difficult problem: non-linear part

» Equivalence with

Mg, (diag(Y)Ra — X¢) = M X. 6,96, /1 X0, |2

I, = Xf,Gk(X:TG;CXHGk)—i_X:TGk: projector on Span(X. ¢,)

"Convexification" :  |IIg, (diag(Y)Ra — X¢)|, < \i




First order conditions (2)

» V=1,...,q, %PL((],’),(}) = 0 implies:
Jv e IR{I such that

R T
Zt ! Rtw +>,_, (R~ Xt:0)y:Ry—v Ry =0

and v R; .o = 0 for every t.

"Convexification" : Z




Relaxation

Scaled Heteroscedastic Dantzig selector (ScHeDs)
Minimizing with respect to (¢, @) € RP x R? the problem

K
min ZM}X:,Gk¢Gk . s.t.

P 4

‘Hck(diag(Y)ll?loz—X<l>)|2 < Ak, Vke{l,...,K};
R

Z - (thtvia - Xt,:¢) YR <0, Vee{l,...,q}
=1 Rt,:a

Theorem: ScHeDs can be solved by an SOCP.
REM: The feasible set of this problem is not empty and contains, in
particular, all the minimizers of the penalized log-likelihood.



Homoscedastic case

Scaled Homoscedastic Dantzig selector (ScHeDs)
Minimizing with respect to (¢, p) € RP x R the problem

K
i el X , 1.
min ; KX e b, s
[T, (diag(Y)p — X6)|, < A, ke {l,.... K}

T—p(Yp—X¢)' Y <0,




Comments on the procedure

» Degrees of freedom:
— Many tuning parameters in the procedure
< Theory: A = Agy/T with A9 > 0 and 7, = rank(X. ¢, )
< Most papers use A\ < /|G| (k=1,...,K)

» Bias correction, practical improvement:
< Classical two-steps methods:
i) our algorithm with A\ = Xo\/7 (k=1,... K)
ii) Least squares on the selected variables (A = 0)




Comments on the implementation

Several off-the-shelves toolboxes (for instance in Matlab) exist to
deal with SOCP

» Sedumi Sturm (1999) : popular interior point method
http://sedumi.ie.lehigh.edu/
— highly accurate solution for moderately large datasets,
eg. p, T <2000

» Tfocs Becker et al. (2011) : first-order proximal method

http://cvxr.com/tfocs/
< less accurate (but do we need high accuracy in a

noisy setting?)
BUT can handle large dimension,
e.g. p=5000 and T = 3000
REM: early stopping could lead to better solutions than
Sedumi


http://sedumi.ie.lehigh.edu/
http://cvxr.com/tfocs/

Homoscedastic noise

Data: 500 repetitions:

» Design matrix: X € RT*? i.i.d. entries N'(0,1)
» Noise vector: RT 5 ¢~ N(07,T) independent of X; o; = o*
» Regression vector: 8° = [1;+, 0p—i] "
< permutation of the entries of B° gives 8*;
» Response vector: Y = X3* + o*¢.
Setting: 8 different settings varying (T, p, i*, 0™)

Challenger: Square-root Lasso

Tuning parameter: universal choice for both A = \/2log(p) as
good in most cases as Cross Validation (cf. Sun and Zhang
(2012) )




Experiment with bias correction for the two methods:

ScHeDs B-B*2 | [i—i] | 10/6—07
(T, p, i, 0%) | Ave StD | Ave StD | Ave StD
(100,100,2,.5) | .06 .03 |.00 .00|.20 .21
(100,100,5,.5) | .11 .08 |.01 .12 |.32 .37
(100, 100,2, 1) .13 .07 | .03 .16 | .57 .46
(100,100,5, 1) | .28 23 |.10 33 | .77 .68
(200,100,5,.5) | .08 .02 |.00 .00 |.23 .16
(200,100,5, 1) | .16 .05 | .00 .01 |.09 .29
(200,500,8,.5) | .09 .03|.00 .00|.22 .16
(200,500,8, 1) | 21 .11 |.03 .17 | .48 .43
Square-root Lasso | |3 —B*|2 | [i—i*| | 10|60 —o”|

(T, p, i, 0%) | Ave StD | Ave StD | Ave StD
(100, 100, 2, .5) .08 .06 | .19 .44 | .32 .23
(100, 100, 5, .5) 12 04| .18 42| 33 24
(100,100, 2, 1) .16 .10 | .19 44 | 59 48
(100,100, 5, 1) 25 16 | .21 .43 | .68 A7
(200,100, 5, .5) .09 03| 21 45| 24 17
(200,100, 5, 1) 18 07 | 21 .48 | 48 .32
(200, 500,38, .5) .10 .03 | .14 38| .23 A7
(200, 500, 8, .5) 21 .07 | .18 .40 | .46 .34




Heteroscedastic (without blocks)

Data:

» Design matrix: X € RT*? i.i.d. entries N'(0,1)

» Noise vector: RT 5 é~ N(07,I) independent of X

» Variances: piecewise constant with blocks of length 7'/10
1st block o; = 8¢*; 5th block o; = 40™;
9th block o; = 50™*; others 7 blocks have o; = o*;

> B*=(2,3,3,3,1.5,1.5,1.5,0,0,0,2,2,2,0,--- ,0)T € RP

» Response vector: y; = X;.8" + 04&,.

Challenger: Square-root Lasso Belloni et al. (2011)
HRR (High dim. Heteroscedastic Regression) Daye et al. (2011)

Tuning parameters: "universal choice” A = \/2log(p);
R: encodes blocks of size T'/20 (i.e. ¢ = 20)




Heteroscedastic noise

Prediction error w (or H(XQAS)/(RCAX) — XB*||2/VT)

Sqrt-Lasso  Sqrt-Lasso Deb. Daye ScHeDs ScHeDs Deb.

T o =4, p=>500

100 6.37 5.92 2.99 5.61 6.17
200 6.26 4.48 2.44 4.89 3.75
500 3.75 2.15 2.36 2.33 2.33
T o =6, p=>500

100 7.67 7.67 3.75 6.44 5.43
200 6.82 6.32 2.34 4.54 3.21
500 5.73 3.92 8.24 2.98 2.34
T o =38, p=>500

100 7.55 7.55 3.96 6.69 6.16
200 6.68 6.46 2.90 4.62 4.68
500 6.53 5.23 10.21 3.91 3.20
T o =10, p = 500

100 7.53 7.53 4.53 5.99 7.63
200 6.84 6.84 4.88 5.92 4.95
500 6.55 5.31 5.21 3.94 3.52




Heteroscedastic noise

Prediction error w (or H(XQAS)/(RCAX) — XB*||2/VT)

Sqrt-Lasso  Sqrt-Lasso Deb. Daye ScHeDs ScHeDs Deb.

T o=4, p=200

100 6.00 5.18 2.20 5.53 5.80
200 6.05 5.53 1.88 4.90 4.74
500 4.08 2.06 2.26 2.55 2.21
T o=6, p=200

100 707 7.77 6.96 6.57 7.14
200 6.75 6.17 2.97 5.02 3.63
500 5.08 2.78 3.80 2.77 2.64
T o=28, p=200

100 7.28 7.28 9.35 6.38 4.99
200 6.94 6.94 5.96 4.61 3.25
500 5.46 5.10 4.95 3.59 2.94
T o =10, p =200

100 6.01 6.91 5.14 5.30 9.15
200 7.14 7.14 11.11 5.52 5.12
500 6.53 6.43 6.07 4.21 3.46




Real data: temperature in Paris
Data: daily temperature in Paris from 2003 to 2008;

— National Climatic Data Center (NCDC).

» Response variable y;: the difference of temperature between
two successive days.

» Covariates x; = (¢, u;): 17 dimensional vector (16+1)
— time {;
— increments of temperature over the past 7 days;
— maximal intraday variation of temperature over the past
7 days;
— wind speed of the day before.
Construction of R: T x 11 matrix with columns r,.

rl(a:t) =1; I’Q((L't) =1

rs(xy) =1/(t+2 x 365)

re(x:) = 14 cos(2m(¢ — 3)t/365); C=4,...,T,
(1) =

re(x:) =14 cos(2m(¢ — 7)t/365); ¢=8,...,11.



Construction of X: ¢ x 2176 matrix with columns f;.

Xm,m/ (W) = , with 1 <m < m'2and m +m' = 2;
Y1 (t) =
W(t): /=0 1=2,3,4;
Ye(t) = cos(2 (E 4)t/365); {=5,...,10;
We(t) = sin(2m(£ — 10)t/365); £ =11,...,16.

— Time-varying second-order polynomial in u;:

fj(t) = W(t) X Xm,m’(ut);
‘{f]}’ =16 x 16 X 17/2 = 2176.

Construction of groups: 136 groups of 16 functions

ngm/ = {¢g(t> X Xme/(’LLt) = ]., ey 16}

> This construction is arbitrary.



Results

Samples:

— Training set: temperatures from 2003 to 2007 (that is, 2172

values);
< Test set: temperatures from 2008 (that is, 366 values, leap

year).

Conclusions of the study:

» Dimension reduction: from 2176 to 26;
» Sign estimation: 62% of right estimation;

» Volatility estimation: the oscillation of the temperature during
the period between May and July is significantly higher than
in March, September and October;
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lHlustration

Increments observed in 2008;
Our prediction of these increments;
Noise level estimation.
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Finite sample risk bound

Theorem

Under the (GRE) + assumptions on signal/noise ratio for any
€ >0, w.p. 1 — ¢, the ScHeDs estimator satisfies

~ N 1 /. K
[X(& =97, 3 (ﬁ\/w + i loa () + \/M) D2
-~ 000 ‘'a _< - . y * L q
Rorlw ~ |\ x| + K log(—) +y/alog(=) |) D5
K
with Dp 5 = log(%) and iy = Zrank(X:,Gk)
k=1

REM:

» assumptions on the signal/noise ratio only needed for the
theorem, not for the construction of the estimator.




Summary

New procedure named ScHeDs:

>

>

Suitable for fitting the heteroscedastic regression model

Simultaneous estimation of the mean and the variance
functions;

Takes into account group sparsity;

Relaxation of first-order conditions for maximum penalized
likelihood estimation

— existence of a solution;

— convex problem — second-order cone programming

Competitive with state-of-the art algorithms
< applicable in a much more general framework.
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min

subject to
Vk=1,--- K
Vk=1,--- K,
Vt=1,---,T,

SOCP reformulation

K
> Ak
k=1

{X:,Gk¢Gk|2 S Uk,

TG, (diag(Y)Ra — X)|, < M,

R'v < R" diag(Y)(diag(Y)Roa — X ¢);
|[vt; Ry cx; \@] |2 <+ Ry



Assumption

Some notations:

k= {k: oG], # 0},
Jg- = |J G Qg = |G,

ke ke

[(K) = S6eRP: > el X @06, < > el X606, ¢ -
keKe kel

Let 1 < b < K be a bound on the group sparsity: |Jy«| < b

Group Restricted Eigenvalue Condition (GREC)

3k, V8 € T(K) \ {0}, s.t.|K| < K%, [XS[2 > k2T Y [X. 6,065
ke

REM: extension of the RE Bickel et al. (2009)



Assumption signal/noise ratio

Define
Oy = min lz rip( X ¢")?
R T &= (Rya%)? '
1 r2
C, = - 44
2 Eiqf?{,q T ;- (R¢.a*)?
]. Ttp
(C3 = min —
3 6717 - q T t€Z7~ (Rt7a*)

The constant in the oracle inequalities satisfies:

A T
Drs = Ciby(1X6 % +log(5))
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