Learning Heteroscedastic Models by Conic Programming under Group Sparsity

> Joseph Salmon Télécom ParisTech http://josephsalmon.eu/

Joint work with: Arnak Dalalyan (ENSAE-CREST), Mohamed Hebiri (Université Paris-Est), Katia Meziani (Université Paris-Dauphine)

Outline

Model

Model and notations Objectives Problem formulation: Group Sparsity

Estimation Method

Penalized log-likelihood formulation Optimality conditions SOCP formulation

Experiments

Synthetic data Real data

Theoretical guarantees Finite sample risk bound

Conclusion

Heteroscedastic regression

Observations: sequence $(\boldsymbol{x}_t, y_t) \in \mathbb{R}^d imes \mathbb{R}$ obeying

$$y_t = \mathbf{b}^*(\boldsymbol{x}_t) + \mathbf{s}^*(\boldsymbol{x}_t)\xi_t, \qquad t = 1, \cdots, T$$

- ▶ Conditional mean: $b^* : \mathbb{R}^d \to \mathbb{R}$ such that $\mathbf{E}[y_t | \boldsymbol{x}_t] = b^*(\boldsymbol{x}_t)$
- ► Conditional variance: $s^{*2} : \mathbb{R}^d \to \mathbb{R}_+$ such that $Var[y_t|\boldsymbol{x}_t] = s^{*2}(\boldsymbol{x}_t)$
- ► Normalized errors: ξ_t such that $\mathbf{E}[\xi_t | \boldsymbol{x}_t] = 0$ and $\mathbf{Var}[\xi_t | \boldsymbol{x}_t] = 1$ (e.g. Gaussian for simplicity)

 \hookrightarrow Including the "time-dependent" mean and variance case: consider $[t; \boldsymbol{x}_t^\top]^\top$ instead of \boldsymbol{x}_t as explanatory variable

Sparsity Assumption

- Estimating b* and s* is ill-posed
- ▶ sparsity senario: b^{*} and s^{*} belong to low dimensional spaces

Example: Homoscedastic regression

$$\forall \boldsymbol{x}, \quad \mathsf{b}^*(\boldsymbol{x}) = [\mathsf{f}_1(\boldsymbol{x}), \dots, \mathsf{f}_p(\boldsymbol{x})] \boldsymbol{\beta}^*, \qquad \text{and} \quad \mathsf{s}^*(\boldsymbol{x}) \equiv \sigma^*$$

 $\begin{array}{l} \hookrightarrow \text{ Dictionary } \{ \mathsf{f}_1, \dots, \mathsf{f}_p \} \text{ of functions from } \mathbb{R}^d \text{ to } \mathbb{R} \\ \hookrightarrow \text{ Unknown vector } (\boldsymbol{\beta}^*, \sigma^*) \in \mathbb{R}^p \times \mathbb{R}, \text{ sparse vector } \boldsymbol{\beta}^* \\ \hookrightarrow \text{ Sparsity index: } i^* = |\boldsymbol{\beta}^*|_0 := \sum_{j=1}^p \mathbb{1}(\boldsymbol{\beta}_j^* \neq 0) \text{ with } \\ i^* \ll T \end{array}$

Homoscedastic case with known noise level

Regression formulation

$$\boldsymbol{Y} = \mathbf{X}\boldsymbol{\beta}^* + \sigma^*\boldsymbol{\xi}$$

Observations:	$oldsymbol{Y} = [y_1, \dots, y_T]^ op \in \mathbb{R}^T$
Noise:	$oldsymbol{\xi} = [\xi_1, \dots, \xi_T]^ op \in \mathbb{R}^T$
Design Matrix:	$\mathbf{X}_{t,j} = [f_j(oldsymbol{x}_t)] \in \mathbb{R}$
Coefficients:	$oldsymbol{eta}^{*}=\left[eta_{1}^{*},\ldots,eta_{p}^{*} ight]^{ op}\in\mathbb{R}^{p}$
Standard deviation:	$s^*(oldsymbol{x}_t)\equiv\sigma^*\in\mathbb{R}^+_*$

REM:

- Y is observed
- \blacktriangleright X is known or chosen by the statistician
- $oldsymbol{eta}^*$ is to be recovered by \hat{eta}

Pioneer methods: homoscedastic, σ^* known

LASSO Tibshirani (1996)

$$\operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left(\frac{|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}|_2^2}{2T} + \lambda \sum_{j=1}^p |\boldsymbol{X}_{:,j}|_2 |\beta_j| \right)$$

Dantzig-Selector Candès and Tao (2007)

$$\operatorname*{arg\,min}_{\boldsymbol{\beta}|_{2} \in \mathbb{R}^{p}} \left\{ \sum_{j=1}^{p} |\boldsymbol{X}_{:,j}|_{2} |\beta_{j}| : \mathsf{s.t.} \forall j = 1, \cdots, p, \ \frac{|\boldsymbol{X}_{:,j}^{\top}(\boldsymbol{Y} - \boldsymbol{X}\beta)|}{|\boldsymbol{X}_{:,j}|_{2}} \leq \lambda \right\}$$

Oracle inequalities (non-asymptotic bounds) available *e.g.* Bickel *et al.* (2009) for a tuning parameter satisfying $\lambda \propto \sigma^*$, BUT knowledge of σ^* needed!

Homoscedastic case with unknown noise level

Matrix/vector formulation

$$\boldsymbol{Y} = \mathbf{X}\boldsymbol{\beta}^* + \sigma^*\boldsymbol{\xi}$$

Observations:	$oldsymbol{Y} = [y_1, \dots, y_T]^ op \in \mathbb{R}^T$
Noise:	$oldsymbol{\xi} = \left[\xi_1, \ldots, \xi_T ight]^ op \in \mathbb{R}^T$
Design Matrix:	$\mathbf{X}_{t,j} = [f_j(oldsymbol{x}_t)] \in \mathbb{R}$
Coefficients:	$oldsymbol{eta}^* = \left[eta_1^*, \dots, eta_p^* ight]^ op \in \mathbb{R}^p$
Standard deviation:	$s^*(\boldsymbol{x}_t)\equiv\sigma^*\in\mathbb{R}^+_*$

<u>REM</u>:

- Y is observed,
- \blacktriangleright X is known or chosen by the statistician

 $egin{array}{c} eta^* \mbox{ and } \sigma^* \mbox{ are to be recovered by } \hat{eta} \mbox{ and } \hat{\sigma} \end{array}$

Pioneering methods: homoscedastic, σ^* unknown

Scaled-Lasso, Städler et al. (2010)

$$\operatorname*{arg\,min}_{\boldsymbol{\beta},\sigma} \left(T \log(\sigma) + \frac{|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}|_2^2}{2\sigma^2} + \frac{\lambda}{\sigma} \sum_{j=1}^p |\boldsymbol{X}_{:,j}|_2 |\beta_j| \right)$$

 \hookrightarrow penalized (Gaussian, negative) log-likelihood minimization \hookrightarrow can be recast in a convex problem (do $\rho := \frac{1}{\sigma}$ and $\phi := \frac{\beta}{\sigma}$):

$$\operatorname*{arg\,min}_{\boldsymbol{\phi},\boldsymbol{\rho}} \bigg(- T\log(\boldsymbol{\rho}) + \frac{|\boldsymbol{\rho} \boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\phi}|_2^2}{2} + \lambda \sum_{j=1}^p |\boldsymbol{X}_{:,j}|_2 |\phi_j| \bigg).$$

- equivariant estimator, *i.e.* if $Y \leftarrow c Y, \beta^* \leftarrow c\beta^*, \sigma^* \leftarrow c\sigma^*$, then $\hat{\beta} \leftarrow c\hat{\beta}$ and $\hat{\sigma} \leftarrow c\hat{\sigma}$
- Jointly convex problem but not a simple one (Linear Programming, etc.)

Pioneering methods: homoscedastic, σ^* unknown Square-Root Lasso Antoniadis (2010), Belloni *et al.* (2011)

Sun and Zhang (2012)

$$\begin{split} \widehat{\boldsymbol{\beta}}^{\mathsf{SqR-Lasso}} &= \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left(\frac{\left| \boldsymbol{Y} - \mathbf{X} \boldsymbol{\beta} \right|_2}{2\sqrt{T}} + \lambda \sum_{j=1}^p \left| \boldsymbol{X}_{:,j} \right|_2 |\beta_j| \right) \\ \widehat{\sigma}^* &= \frac{1}{\sqrt{T}} \left| \boldsymbol{Y} - \mathbf{X} \widehat{\boldsymbol{\beta}}^{\mathsf{SqR-Lasso}} \right|_2 \end{split}$$

 $\stackrel{\hookrightarrow}{\to} \text{equivalent to sequentially minimizing the following} \\ \arg\min_{\sigma,\beta} \left(\sigma + \frac{|\mathbf{Y} - \mathbf{X}\beta|_2^2}{2T\sigma} + \lambda \sum_{j=1}^p |\mathbf{X}_{:,j}|_2 |\beta_j| \right)$

- Can be solved by a Second Order Cone Program (SOCP)
- Not easily extended to the heteroscedastic case
- Extension to matrix completion Klopp (2011)

Objectives

Extending previous works Dalalyan and Chen (2012), propose a method for **jointly** estimating:

- the conditional mean function b*
- the conditional volatility s*

 \hookrightarrow for the heteroscedastic regression

 \hookrightarrow without any knowledge on the noise level

Problem re-formulation

Re-parametrize by the inverse of the conditional volatility s^*

$$\mathsf{r}^*(\boldsymbol{x}) = \frac{1}{\mathsf{s}^*(\boldsymbol{x})} \ \text{and} \ \mathsf{f}^*(\boldsymbol{x}) = \frac{\mathsf{b}^*(\boldsymbol{x})}{\mathsf{s}^*(\boldsymbol{x})}$$

Assumptions on the model (I)

Group Sparsity Assumption

For a given family G_1, \ldots, G_K of disjoint subsets of $\{1, \ldots, p\}$, there is a vector $\phi^* \in \mathbb{R}^p$ such that

$$[\mathsf{f}^*(\boldsymbol{x}_1),\ldots,\mathsf{f}^*(\boldsymbol{x}_T)]^\top = \mathbf{X}\boldsymbol{\phi}^*, \qquad \mathsf{Card}(\{k: |\boldsymbol{\phi}^*_{G_k}|_2 \neq 0\}) \ll K.$$

Sparse vector:

Group Sparse vector:

<u>REM</u>: Note that the groups have not necessarily the same size

Examples of application I

Group sparsity assumption (I)

Assumptions on the model (II)

Low dimension volatility assumption

For q given functions r_1, \ldots, r_q mapping \mathbb{R}^d into \mathbb{R}_+ , there is a vector $\boldsymbol{\alpha}^* \in \mathbb{R}^q$ such that $r^*(\boldsymbol{x}) = \sum_{\ell=1}^q \alpha_\ell^* r_\ell(\boldsymbol{x})$ for almost every $\boldsymbol{x} \in \mathbb{R}^d$, and S is the linear span of r_1, \ldots, r_q .

$$[\mathsf{r}^*(\boldsymbol{x}_1),\ldots,\mathsf{r}^*(\boldsymbol{x}_T)]^{ op} = \boldsymbol{R}\boldsymbol{\alpha}^*$$

<u>**REM</u>**: here and after $q \ll T$ </u>

Examples of application (II)

Low dimension volatility assumption

Block-wise homoscedastic noise

 $\hookrightarrow r^* \text{ is well approximated by a piecewise constant} \\ \text{function: time series modeling (smooth variations over time),} \\ \text{image processing (neighboring pixels are often corrupted by} \\ \text{noise levels of similar magnitude).} \\ \end{cases}$

Periodic noise-level

 $\hookrightarrow r^* \text{ belongs to the linear span of a few trigonometric} \\ functions: meteorology (seasonal variations), image processing (electronic disturbance of repeating nature, caused for instance by an electric motor).$

Penalized log-likelihood formulation

penalized log-likelihood used for defining the group-Lasso

• Tuning parameter: $\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_K) \in \mathbb{R}_+^K$

Introduce the $T \times q$ matrix $\mathbf{R} = (r_{\ell}(\mathbf{x}_t))_{t,\ell}$ The cost function becomes $PL(\boldsymbol{\phi}, \boldsymbol{\alpha})$:

$$\begin{aligned} \mathsf{PL}(\boldsymbol{\phi}, \boldsymbol{\alpha}) &= -\sum_{t=1}^{T} \log(\boldsymbol{R}_{t,:} \boldsymbol{\alpha}) + \frac{1}{2} \sum_{t=1}^{T} \left(y_t \boldsymbol{R}_{t,:} \boldsymbol{\alpha} - \boldsymbol{X}_{t,:} \boldsymbol{\phi} \right)^2 \\ &+ \sum_{k=1}^{K} \lambda_k |\boldsymbol{X}_{:,G_k} \boldsymbol{\phi}_{G_k}|_2 \end{aligned}$$

• <u>REM</u>: use penalty $\sum_{k=1}^{K} \lambda_k |\mathbf{X}_{:,G_k} \phi_{G_k}|_2$ instead of $\sum_{k=1}^{K} \lambda_k |\phi_{G_k}|_2$ Simon and Tibshirani (2012)

Optimization considerations

► Minimization of PL can be seen as a log-det problem → But higher computational complexity than Linear Programming (LP) and SOCP

Reduce computation cost

 \hookrightarrow Dantzig Selector arguments;

 \hookrightarrow First-order conditions:

$$\forall k \in \{1, \dots, K\}, \qquad \frac{\partial}{\partial \phi_{G_k}} \mathsf{PL}(\phi, \alpha) = 0 \qquad (1)$$

$$\forall \ell \in \{1, \dots, q\}, \qquad \frac{\partial}{\partial \alpha_{\ell}} \mathsf{PL}(\phi, \alpha) = 0 \qquad (2)$$

First order conditions (1)

►
$$\forall k \in \{1, ..., K\}$$
, $\frac{\partial}{\partial \phi_{G_k}} \mathsf{PL}(\phi, \alpha) = 0$ implies:

$$-\mathbf{X}_{:,G_k}^{\top}(\mathsf{diag}(\mathbf{Y})\mathbf{R}\boldsymbol{\alpha} - \mathbf{X}\boldsymbol{\phi}) + \lambda_k \mathbf{X}_{:,G_k}^{\top} \frac{\mathbf{X}_{:,G_k}\boldsymbol{\phi}_{:,G_k}}{\left|\mathbf{X}_{:,G_k}\boldsymbol{\phi}_{:,G_k}\right|_2} = 0$$

 $\hookrightarrow \text{True if } \min_k | \boldsymbol{X}_{:,G_k} \boldsymbol{\phi}_{:,G_k} |_2 \neq 0 \\ \hookrightarrow \text{Difficult problem: non-linear part}$

Equivalence with

 $\begin{aligned} \mathbf{\Pi}_{G_k}(\mathsf{diag}(\boldsymbol{Y})\boldsymbol{R}\boldsymbol{\alpha} - \mathbf{X}\boldsymbol{\phi}) &= \lambda_k \mathbf{X}_{:,G_k} \boldsymbol{\phi}_{G_k} / |\mathbf{X}_{:,G_k} \boldsymbol{\phi}_{G_k}|_2 \\ \mathbf{\Pi}_{G_k} &= \mathbf{X}_{:,G_k} (\mathbf{X}_{:,G_k}^\top \mathbf{X}_{:,G_k})^+ \mathbf{X}_{:,G_k}^\top: \text{ projector on } \operatorname{Span}(\mathbf{X}_{:,G_k}) \end{aligned}$

 $\underline{\texttt{"Convexification"}}: \quad \big| \boldsymbol{\Pi}_{G_k}(\mathsf{diag}(\boldsymbol{Y})\boldsymbol{R}\boldsymbol{\alpha} - \mathbf{X}\boldsymbol{\phi}) \big|_2 \leq \lambda_k$

First order conditions (2)

$$\forall \ell = 1, \dots, q, \ \frac{\partial}{\partial \alpha_{\ell}} \mathsf{PL}(\phi, \alpha) = 0 \text{ implies:} \\ \exists \ \boldsymbol{\nu} \in \mathbb{R}_{+}^{T} \text{ such that}$$

$$-\sum_{t=1}^{T} \frac{\boldsymbol{R}_{t\ell}}{\boldsymbol{R}_{t,:}\boldsymbol{\alpha}} + \sum_{t=1}^{T} \left(y_t \boldsymbol{R}_{t,:}\boldsymbol{\alpha} - \boldsymbol{X}_{t,:}\boldsymbol{\phi} \right) y_t \boldsymbol{R}_{t\ell} - \boldsymbol{\nu}^{\top} \boldsymbol{R}_{:,\ell} = 0$$

and
$$\nu_t \mathbf{R}_{t,:} \boldsymbol{\alpha} = 0$$
 for every t .

$$\underline{\text{"Convexification"}}: \sum_{t=1}^{T} \frac{\boldsymbol{R}_{t\ell}}{\boldsymbol{R}_{t,:}\boldsymbol{\alpha}} - (y_t \boldsymbol{R}_{t,:}\boldsymbol{\alpha} - \boldsymbol{X}_{t,:}\boldsymbol{\phi}) y_t \boldsymbol{R}_{t\ell} \leq 0$$

Relaxation

Scaled Heteroscedastic Dantzig selector (ScHeDs)

Minimizing with respect to $(oldsymbol{\phi},oldsymbol{lpha})\in\mathbb{R}^p imes\mathbb{R}^q$ the problem

$$\begin{split} \min_{\phi,\alpha} & \sum_{k=1}^{K} \lambda_{k} \big| \mathbf{X}_{:,G_{k}} \boldsymbol{\phi}_{G_{k}} \big|_{2}, \qquad s.t. \\ & \Big| \mathbf{\Pi}_{G_{k}} \big(\operatorname{diag}(\boldsymbol{Y}) \boldsymbol{R} \boldsymbol{\alpha} - \mathbf{X} \boldsymbol{\phi} \big) \big|_{2} \leq \lambda_{k}, \qquad \quad \forall k \in \{1, \dots, K\}; \\ & \sum_{t=1}^{T} \frac{\boldsymbol{R}_{t\ell}}{\boldsymbol{R}_{t,:} \boldsymbol{\alpha}} - \big(y_{t} \boldsymbol{R}_{t,:} \boldsymbol{\alpha} - \boldsymbol{X}_{t,:} \boldsymbol{\phi} \big) y_{t} \boldsymbol{R}_{t\ell} \leq 0, \qquad \forall \ell \in \{1, \dots, q\}; \end{split}$$

Theorem: ScHeDs can be solved by an SOCP.

<u>REM</u>: The feasible set of this problem is not empty and contains, in particular, all the minimizers of the penalized log-likelihood.

Homoscedastic case

Scaled Homoscedastic Dantzig selector (ScHeDs)

Minimizing with respect to $(\boldsymbol{\phi}, \rho) \in \mathbb{R}^p \times \mathbb{R}$ the problem

$$\begin{split} \min_{\phi,\rho} \quad & \sum_{k=1}^{K} \lambda_k \big| \mathbf{X}_{:,G_k} \boldsymbol{\phi}_{G_k} \big|_2, \qquad s.t. \\ & \Big| \mathbf{\Pi}_{G_k} \big(\operatorname{diag}(\mathbf{Y}) \rho - \mathbf{X} \boldsymbol{\phi} \big) \big|_2 \leq \lambda_k, \qquad \quad \forall k \in \{1,\ldots,K\}; \\ & T - \rho \big(\mathbf{Y} \rho - \mathbf{X} \boldsymbol{\phi} \big)^\top \mathbf{Y} \leq 0, \end{split}$$

Comments on the procedure

Degrees of freedom:

 \hookrightarrow Many tuning parameters in the procedure

 \hookrightarrow Theory: $\lambda_k = \lambda_0 \sqrt{r_k}$ with $\lambda_0 > 0$ and $r_k = \operatorname{rank}(\mathbf{X}_{:,G_k})$

 \hookrightarrow Most papers use $\lambda_k \propto \sqrt{|G_k|} \ (k = 1, \dots, K)$

Bias correction, practical improvement:

 \hookrightarrow Classical two-steps methods:

i) our algorithm with $\lambda_k = \lambda_0 \sqrt{r_k}$ (k=1,...,K)

ii) Least squares on the selected variables ($oldsymbol{\lambda}=0$)

Comments on the implementation

Several off-the-shelves toolboxes (for instance in Matlab) exist to deal with SOCP $% \left({{\left[{{{\rm{SOCP}}} \right]_{\rm{soc}}} \right)_{\rm{soc}}} \right)$

- ► Sedumi Sturm (1999) : popular interior point method http://sedumi.ie.lehigh.edu/ → highly accurate solution for moderately large datasets, e.g. p, T ≤ 2000
- Tfocs Becker et al. (2011) : first-order proximal method http://cvxr.com/tfocs/

 \hookrightarrow less accurate (but do we need high accuracy in a noisy setting?)

BUT can handle large dimension,

e.g. p = 5000 and T = 3000

 $\underline{\text{REM}}:$ early stopping could lead to better solutions than Sedumi

Homoscedastic noise

Data: 500 repetitions:

- Design matrix: $\mathbf{X} \in \mathbb{R}^{T \times p}$ i.i.d. entries $\mathcal{N}(0, 1)$
- ► Noise vector: $\mathbb{R}^T \ni \boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}_T, \mathbf{I})$ independent of \mathbf{X} ; $\sigma_t \equiv \sigma^*$
- Regression vector: $\boldsymbol{\beta}^0 = [\mathbf{1}_{i^*}, \ \mathbf{0}_{p-i^*}]^{\top}$;

 \hookrightarrow permutation of the entries of eta^0 gives eta^* ;

• Response vector: $Y = X\beta^* + \sigma^* \xi$.

<u>Setting</u>: 8 different settings varying (T, p, i^*, σ^*)

Challenger: Square-root Lasso

<u>Tuning parameter</u>: universal choice for both $\lambda = \sqrt{2 \log(p)}$ as good in most cases as Cross Validation (*cf.* Sun and Zhang (2012))

Experiment with bias correction for the two methods:

ScHeDs	$ \hat{\beta} -$	$oldsymbol{eta}^* _2$	$ \hat{i} -$	$ i^* $	$ 10 \hat{\sigma} $	$-\sigma^* $
(T, p, i^*, σ^*)	Ave	StD	Ave	StD	Ave	StD
(100, 100, 2, .5)	.06	.03	.00	.00	.29	.21
(100, 100, 5, .5)	.11	.08	.01	.12	.32	.37
(100, 100, 2, 1)	.13	.07	.03	.16	.57	.46
(100, 100, 5, 1)	.28	.23	.10	.33	.77	.68
(200, 100, 5, .5)	.08	.02	.00	.00	.23	.16
(200, 100, 5, 1)	.16	.05	.00	.01	.09	.29
(200, 500, 8, .5)	.09	.03	.00	.00	.22	.16
(200, 500, 8, 1)	.21	.11	.03	.17	.48	.43

Square-root Lasso	$ \hat{oldsymbol{eta}} $ –	$oldsymbol{eta}^* _2$	$ \hat{i} - \hat{i} $	$ i^* $	$10 \hat{\sigma}$	$-\sigma^* $
(T, p, i^*, σ^*)	Ave	StD	Ave	StD	Ave	StD
(100, 100, 2, .5)	.08	.06	.19	.44	.32	.23
(100, 100, 5, .5)	.12	.04	.18	.42	.33	.24
(100, 100, 2, 1)	.16	.10	.19	.44	.59	.48
(100, 100, 5, 1)	.25	.16	.21	.43	.68	.47
(200, 100, 5, .5)	.09	.03	.21	.45	.24	.17
(200, 100, 5, 1)	.18	.07	.21	.48	.48	.32
(200, 500, 8, .5)	.10	.03	.14	.38	.23	.17
(200, 500, 8, .5)	.21	.07	.18	.40	.46	.34

Heteroscedastic (without blocks)

<u>Data:</u>

- Design matrix: $\mathbf{X} \in \mathbb{R}^{T \times p}$ i.i.d. entries $\mathcal{N}(0, 1)$
- ▶ Noise vector: $\mathbb{R}^T \ni \boldsymbol{\xi} \sim \mathcal{N}(\boldsymbol{0}_T, \mathbf{I})$ independent of \mathbf{X}
- Variances: piecewise constant with blocks of length T/10 1st block σ_t ≡ 8σ*; 5th block σ_t ≡ 4σ*; 9th block σ_t ≡ 5σ*; others 7 blocks have σ_t ≡ σ*;
- $\blacktriangleright \ \beta^* = (2, 3, 3, 3, 1.5, 1.5, 1.5, 0, 0, 0, 2, 2, 2, 0, \cdots, 0)^\top \in \mathbb{R}^p$
- Response vector: $y_t = \mathbf{X}_{t,:} \boldsymbol{\beta}^* + \sigma_t \boldsymbol{\xi}_t$.

Challenger: Square-root Lasso Belloni et al. (2011) HRR (High dim. Heteroscedastic Regression) Daye et al. (2011)

Tuning parameters: "universal choice" $\lambda = \sqrt{2 \log(p)}$; **R**: encodes blocks of size T/20 (*i.e.* q = 20)

Heteroscedastic noise

Prediction error
$$\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}}-\mathbf{X}\boldsymbol{\beta}^*\|_2}{\sqrt{T}}$$
 (or $\|(\mathbf{X}\hat{\phi})./(\boldsymbol{R}\hat{\boldsymbol{\alpha}})-\mathbf{X}\boldsymbol{\beta}^*\|_2/\sqrt{T}$)

	Sqrt-Lasso	Sqrt-Lasso Deb.	Daye	ScHeDs	ScHeDs Deb.	
T	$\sigma = 4, \ p = 500$					
100	6.37	5.92	2.99	5.61	6.17	
200	6.26	4.48	2.44	4.89	3.75	
500	3.75	2.15	2.36	2.33	2.33	
T	$\sigma = 6, \ p = 500$					
100	7.67	7.67	3.75	6.44	5.43	
200	6.82	6.32	2.34	4.54	3.21	
500	5.73	3.92	8.24	2.98	2.34	
T	$\sigma = 8, \ p = 500$					
100	7.55	7.55	3.96	6.69	6.16	
200	6.68	6.46	2.90	4.62	4.68	
500	6.53	5.23	10.21	3.91	3.20	
T	$\sigma = 10, \ p = 500$					
100	7.53	7.53	4.53	5.99	7.63	
200	6.84	6.84	4.88	5.92	4.95	
500	6.55	5.31	5.21	3.94	3.52	

Heteroscedastic noise

Prediction error
$$\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}}-\mathbf{X}\boldsymbol{\beta}^*\|_2}{\sqrt{T}}$$
 (or $\|(\mathbf{X}\hat{\phi})./(\boldsymbol{R}\hat{\boldsymbol{\alpha}})-\mathbf{X}\boldsymbol{\beta}^*\|_2/\sqrt{T}$)

	Sqrt-Lasso	Sqrt-Lasso Deb.	Daye	ScHeDs	ScHeDs Deb.		
T	$\sigma = 4, \ p = 200$						
100	6.00	5.18	2.20	5.53	5.80		
200	6.05	5.53	1.88	4.90	4.74		
500	4.08	2.06	2.26	2.55	2.21		
Т	$\sigma = 6, \ p = 200$						
100	7.77	7.77	6.96	6.57	7.14		
200	6.75	6.17	2.97	5.02	3.63		
500	5.08	2.78	3.80	2.77	2.64		
T	$\sigma = 8, \ p = 200$						
100	7.28	7.28	9.35	6.38	4.99		
200	6.94	6.94	5.96	4.61	3.25		
500	5.46	5.10	4.95	3.59	2.94		
Т	$\sigma = 10, \ p = 200$						
100	6.01	6.91	5.14	5.30	9.15		
200	7.14	7.14	11.11	5.52	5.12		
500	6.53	6.43	6.07	4.21	3.46		

Real data: temperature in Paris

- <u>Data</u>: daily temperature in Paris from 2003 to 2008; \hookrightarrow National Climatic Data Center (NCDC).
 - Response variable y_t: the difference of temperature between two successive days.
 - ► Covariates $\boldsymbol{x}_t = (t, \boldsymbol{u}_t)$: 17 dimensional vector (16+1) \hookrightarrow time t;

 \hookrightarrow increments of temperature over the past 7 days;

 \hookrightarrow maximal intraday variation of temperature over the past 7 days;

 \hookrightarrow wind speed of the day before.

<u>Construction of \mathbf{R} </u>: $T \times 11$ matrix with columns r_{ℓ} .

$$\begin{aligned} \mathsf{r}_{1}(\boldsymbol{x}_{t}) &= 1; & \mathsf{r}_{2}(\boldsymbol{x}_{t}) = t; \\ \mathsf{r}_{3}(\boldsymbol{x}_{t}) &= 1/(t+2\times 365)^{\frac{1}{2}}; \\ \mathsf{r}_{\ell}(\boldsymbol{x}_{t}) &= 1 + \cos(2\pi(\ell-3)t/365); & \ell = 4, \dots, 7; \\ \mathsf{r}_{\ell}(\boldsymbol{x}_{t}) &= 1 + \cos(2\pi(\ell-7)t/365); & \ell = 8, \dots, 11. \end{aligned}$$

<u>Construction of X</u>: $t \times 2176$ matrix with columns f_i .

$$\begin{split} \chi_{m,m'}(\boldsymbol{u}_t) &= u_t^m u_t^{m'}, \quad \text{with } 1 \le m \le m'2 \text{ and } m+m'=2; \\ \psi_1(t) &= 1; \\ \psi_\ell(t) &= t^{1/(\ell-1)}, \quad \ell=2,3,4; \\ \psi_\ell(t) &= \cos(2\pi(\ell-4)t/365); \quad \ell=5,\ldots,10; \\ \psi_\ell(t) &= \sin(2\pi(\ell-10)t/365); \quad \ell=11,\ldots,16. \end{split}$$

 \hookrightarrow Time-varying second-order polynomial in u_t :

$$f_j(t) = \psi_{\ell}(t) \times \chi_{m,m'}(\boldsymbol{u}_t); |\{f_j\}| = 16 \times 16 \times 17/2 = 2176.$$

Construction of groups: 136 groups of 16 functions

$$\mathcal{G}_{m,m'} = \{\psi_{\ell}(t) \times \chi_{m,m'}(\boldsymbol{u}_t) : \ell = 1, \dots, 16\}.$$

> This construction is arbitrary.

Results

Samples:

 \hookrightarrow Training set: temperatures from 2003 to 2007 (that is, 2172 values);

 \hookrightarrow Test set: temperatures from 2008 (that is, 366 values, leap year).

Conclusions of the study:

- Dimension reduction: from 2176 to 26;
- Sign estimation: 62% of right estimation;
- Volatility estimation: the oscillation of the temperature during the period between May and July is significantly higher than in March, September and October;

Illustration

- 1) Increments observed in 2008;
- 2) Our prediction of these increments;
- 3) Noise level estimation.

Finite sample risk bound

Theorem

Under the (GRE) + assumptions on signal/noise ratio for any $\epsilon>0,$ w.p. $1-\epsilon,$ the ScHeDs estimator satisfies

$$\begin{split} \left| \boldsymbol{X}(\hat{\boldsymbol{\phi}} - \boldsymbol{\phi}^*) \right|_2 \precsim \left(\frac{1}{\kappa} \sqrt{i_{\boldsymbol{\phi}^*} + |\mathcal{K}^*| \log(\frac{K}{\epsilon})} + \sqrt{q \log(\frac{q}{\epsilon})} \right) D_{T,\delta}^{3/2} \\ \frac{\left| \boldsymbol{R}(\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}^*) \right|_2}{|\boldsymbol{R}\boldsymbol{\alpha}^*|_{\infty}} \precsim \left(\frac{1}{\kappa} \sqrt{i_{\boldsymbol{\phi}^*} + |\mathcal{K}^*| \log(\frac{K}{\epsilon})} + \sqrt{q \log(\frac{q}{\epsilon})} \right) D_{T,\delta}^{3/2} \end{split}$$

with
$$D_{T,\delta} = \log(\frac{T}{\delta})$$
 and $i_{\phi^*} = \sum_{k=1}^{n} \operatorname{rank}(X_{:,G_k})$

REM:

assumptions on the signal/noise ratio only needed for the theorem, not for the construction of the estimator.

Summary

New procedure named ScHeDs:

- Suitable for fitting the heteroscedastic regression model
- Simultaneous estimation of the mean and the variance functions;
- Takes into account group sparsity;
- Relaxation of first-order conditions for maximum penalized likelihood estimation

 \hookrightarrow existence of a solution;

 \hookrightarrow convex problem – second-order cone programming

► Competitive with state-of-the art algorithms → applicable in a much more general framework.

References I

- ► A. Antoniadis, Comments on: ℓ₁-penalization for mixture regression models, TEST 19 (2010), no. 2, 257–258. MR 2677723
- S. R. Becker, E. J. Candès, and M. C. Grant, *Templates for convex cone problems with applications to sparse signal recovery*, Mathematical Programming Computation 3 (2011), no. 3, 165–218.
- A. Belloni, V. Chernozhukov, and L. Wang, Square-root Lasso: Pivotal recovery of sparse signals via conic programming, Biometrika 98 (2011), no. 4, 791–806.
- P. J. Bickel, Y. Ritov, and A. B. Tsybakov, Simultaneous analysis of Lasso and Dantzig selector, Ann. Statist. 37 (2009), no. 4, 1705–1732.
- E. J. Candès and T. Tao, The Dantzig selector: statistical estimation when p is much larger than n, Ann. Statist. 35 (2007), no. 6, 2313–2351.
- A. S. Dalalyan and Y. Chen, Fused sparsity and robust estimation for linear models with unknown variance, NIPS, 2012, pp. 1268–1276.

References II

- ▶ J. Daye, J. Chen, and H. Li, *High-dimensional heteroscedastic regression with an application to eQTL data analysis*, Biometrics **68** (2012), no. 1, 316–326.
- O. Klopp, High dimensional matrix estimation with unknown variance of the noise, arXiv preprint arXiv:1112.3055 (2011).
- ▶ N. Städler, P. Bühlmann, and Sara s van de Geer, ℓ₁-penalization for mixture regression models, TEST **19** (2010), no. 2, 209–256.
- N. Simon and R. Tibshirani, Standardization and the Group Lasso penalty, Stat. Sin. 22 (2012), no. 3, 983–1001 (English).
- ► J. F. Sturm, Using sedumi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software 11–12 (1999), 625–653.
- T. Sun and C.-H. Zhang, Scaled sparse linear regression, Biometrika 99 (2012), no. 4, 879–898.
- R. Tibshirani, Regression shrinkage and selection via the Lasso, J. R. Stat. Soc. Ser. B Stat. Methodol. 58 (1996), no. 1, 267–288.

SOCP reformulation

$$\min \quad \sum_{k=1}^{K} \lambda_k u_k$$

subject to

$$\begin{aligned} \forall k &= 1, \cdots, K \quad \left| \boldsymbol{X}_{:,G_k} \boldsymbol{\phi}_{G_k} \right|_2 \leq u_k, \\ \forall k &= 1, \cdots, K, \quad \left| \boldsymbol{\Pi}_{G_k} (\operatorname{diag}(\boldsymbol{Y}) \boldsymbol{R} \boldsymbol{\alpha} - \boldsymbol{X} \boldsymbol{\phi}) \right|_2 \leq \lambda_k, \\ \boldsymbol{R}^\top \boldsymbol{v} \leq \boldsymbol{R}^\top \operatorname{diag}(\boldsymbol{Y}) (\operatorname{diag}(\boldsymbol{Y}) \boldsymbol{R} \boldsymbol{\alpha} - \boldsymbol{X} \boldsymbol{\phi}); \\ \forall t &= 1, \cdots, T, \quad \left| \left[v_t; \boldsymbol{R}_{t,:} \boldsymbol{\alpha}; \sqrt{2} \right] \right|_2 \leq v_t + \boldsymbol{R}_{t,:} \boldsymbol{\alpha}; \end{aligned}$$

Assumption

Some notations:

$$\begin{split} \mathcal{K}^* &= \left\{ k : |\boldsymbol{\phi}_{G_k}^*|_1 \neq 0 \right\}, \\ J_{\boldsymbol{\phi}^*} &= \bigcup_{k \in \mathcal{K}^*} G_k, \qquad i_{\boldsymbol{\phi}^*} = \sum_{k \in \mathcal{K}^*} |G_k|, \\ \Gamma(\mathcal{K}) &= \left\{ \boldsymbol{\delta} \in \mathbb{R}^p : \sum_{k \in \mathcal{K}^c} \lambda_k |\mathbf{X}_{:,G_k} \boldsymbol{\delta}_{G_k}|_2 \leq \sum_{k \in \mathcal{K}} \lambda_k |\mathbf{X}_{:,G_k} \boldsymbol{\delta}_{G_k}|_2 \right\}. \end{split}$$

Let $1 \leq b \leq K$ be a bound on the group sparsity: $\left|J_{\phi^*}\right| \leq b$

Group Restricted Eigenvalue Condition (GREC)

$$\exists \kappa, \forall \boldsymbol{\delta} \in \Gamma(\mathcal{K}) \setminus \{0\}, \mathsf{s.t.} \big| \mathcal{K} \big| \leq \mathcal{K}^*, \big| \mathbf{X} \boldsymbol{\delta} \big|_2^2 \geq \kappa^2 T \sum_{k \in \mathcal{K}} \big| \mathbf{X}_{:,G_k} \boldsymbol{\delta}_{G_k} \big|_2^2$$

<u>REM</u>: extension of the RE Bickel et al. (2009)

Assumption signal/noise ratio

Define

$$C_{1} = \min_{\ell=1,...,q} \frac{1}{T} \sum_{t \in \mathcal{T}} \frac{r_{t\ell}^{2} (\boldsymbol{X}_{t,:} \boldsymbol{\phi}^{*})^{2}}{(\boldsymbol{R}_{t,:} \boldsymbol{\alpha}^{*})^{2}} ,$$

$$C_{2} = \max_{\ell=1,...,q} \frac{1}{T} \sum_{t \in \mathcal{T}} \frac{r_{t\ell}^{2}}{(\boldsymbol{R}_{t,:} \boldsymbol{\alpha}^{*})^{2}} ,$$

$$C_{3} = \min_{\ell=1,...,q} \frac{1}{T} \sum_{t \in \mathcal{T}} \frac{r_{t\ell}}{(\boldsymbol{R}_{t,:} \boldsymbol{\alpha}^{*})} .$$

We denote $C_4 = (\sqrt{C_2} + \sqrt{2C_1})/C_3$ and

$$\max_{t=1,\cdots,T} \frac{(\boldsymbol{R}_{t,:} \hat{\boldsymbol{\alpha}})}{(\boldsymbol{R}_{t,:} \boldsymbol{\alpha}^*)} \leq \hat{D}_1$$

The constant in the oracle inequalities satisfies:

$$D_{T,\delta} = C_4 \hat{D}_1(|\boldsymbol{X}\boldsymbol{\phi}^*|_{\infty}^2 + \log(\frac{T}{\delta}))$$