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Heteroscedastic regression

Observations: sequence (xt , yt) ∈ Rd × R obeying

yt = b∗(xt) + s∗(xt)ξt , t = 1, · · · ,T

I Conditional mean: b∗ : Rd → R such that E[yt |xt ] = b∗(xt)
I Conditional variance: s∗2 : Rd → R+ such that

Var[yt |xt ] = s∗2(xt)

I Normalized errors: ξt such that E[ξt |xt ] = 0 and
Var[ξt |xt ] = 1 (e.g. Gaussian for simplicity)

↪→ Including the "time-dependent" mean and variance case:
consider [t; x>t ]> instead of xt as explanatory variable



Sparsity Assumption

I Estimating b∗ and s∗ is ill-posed

I sparsity senario: b∗ and s∗ belong to low dimensional spaces

Example: Homoscedastic regression

∀x, b∗(x) = [f1(x), . . . , fp(x)]β∗, and s∗(x) ≡ σ∗

↪→ Dictionary {f1, . . . , fp} of functions from Rd to R

↪→ Unknown vector (β∗, σ∗) ∈ Rp × R, sparse vector β∗

↪→ Sparsity index: i∗ = |β∗|0 :=
∑p

j=1
1l(β∗j 6= 0) with

i∗ � T



Homoscedastic case with known noise level
Regression formulation

Y = Xβ∗ + σ∗ξ

Observations: Y = [y1, . . . , yT ]> ∈ RT

Noise: ξ = [ξ1, . . . , ξT ]> ∈ RT

Design Matrix: Xt,j = [fj(xt)] ∈ R

Coefficients: β∗ =
[
β∗1 , . . . , β

∗
p

]>
∈ Rp

Standard deviation: s∗(xt) ≡ σ∗ ∈ R+
∗

REM:
I Y is observed
I X is known or chosen by the statistician
I β∗ is to be recovered by β̂



Pioneer methods: homoscedastic, σ∗ known

LASSO Tibshirani (1996)

arg min
β∈Rp

( |Y −Xβ|22
2T + λ

p∑
j=1
|X :,j |2|βj |

)

Dantzig-Selector Candès and Tao (2007)

arg min
β|2∈Rp

{ p∑
j=1
|X :,j |2|βj | : s.t.∀j = 1, · · · , p,

|X>:,j(Y −Xβ)|
|X :,j |2

≤ λ
}

Oracle inequalities (non-asymptotic bounds) available e.g. Bickel
et al. (2009) for a tuning parameter satisfying λ ∝ σ∗,
BUT knowledge of σ∗ needed!



Homoscedastic case with unknown noise level
Matrix/vector formulation

Y = Xβ∗ + σ∗ξ

Observations: Y = [y1, . . . , yT ]> ∈ RT

Noise: ξ = [ξ1, . . . , ξT ]> ∈ RT

Design Matrix: Xt,j = [fj(xt)] ∈ R

Coefficients: β∗ =
[
β∗1 , . . . , β

∗
p

]>
∈ Rp

Standard deviation: s∗(xt) ≡ σ∗ ∈ R+
∗

REM:
I Y is observed,
I X is known or chosen by the statistician
I β∗ and σ∗ are to be recovered by β̂ and σ̂



Pioneering methods: homoscedastic, σ∗

unknown
Scaled-Lasso, Städler et al. (2010)

arg min
β,σ

(
T log(σ) + |Y −Xβ|22

2σ2 + λ

σ

∑p
j=1
|X :,j |2|βj |

)
.

↪→ penalized (Gaussian, negative) log-likelihood minimization
↪→ can be recast in a convex problem (do ρ := 1

σ and φ := β
σ ):

arg min
φ,ρ

(
− T log(ρ) + |ρY −Xφ|22

2 + λ
∑p

j=1
|X :,j |2|φj |

)
.

I equivariant estimator, i.e. if Y ← cY ,β∗ ← cβ∗, σ∗ ← cσ∗,
then β̂ ← cβ̂ and σ̂ ← cσ̂

I Jointly convex problem but not a simple one (Linear
Programming, etc.)



Pioneering methods: homoscedastic, σ∗

unknown
Square-Root Lasso Antoniadis (2010) , Belloni et al. (2011)
Sun and Zhang (2012)

β̂
SqR-Lasso = arg min

β

(∣∣Y −Xβ
∣∣
2

2
√

T
+ λ

∑p
j=1
|X :,j |2|βj |

)
σ̂∗ = 1√

T
∣∣Y −Xβ̂

SqR-Lasso∣∣
2

↪→ equivalent to sequentially minimizing the following

arg min
σ,β

(
σ + |Y −Xβ|22

2Tσ + λ
∑p

j=1
|X :,j |2|βj |

)

I Can be solved by a Second Order Cone Program (SOCP)
I Not easily extended to the heteroscedastic case
I Extension to matrix completion Klopp (2011)



Objectives

Extending previous works Dalalyan and Chen (2012) , propose a
method for jointly estimating:

I the conditional mean function b∗

I the conditional volatility s∗

↪→ for the heteroscedastic regression

↪→ without any knowledge on the noise level

Problem re-formulation
Re-parametrize by the inverse of the conditional volatility s∗

r∗(x) = 1
s∗(x) and f∗(x) = b∗(x)

s∗(x)



Assumptions on the model (I)

Group Sparsity Assumption
For a given family G1, . . . ,GK of disjoint subsets of {1, . . . , p},
there is a vector φ∗ ∈ Rp such that

[ f∗(x1), . . . , f∗(xT )]> = Xφ∗, Card({k : |φ∗Gk |2 6= 0})� K .

Sparse vector:

Group Sparse vector:

REM: Note that the groups have not necessarily the same size



Examples of application I

Group sparsity assumption (I)

I Sparse linear model with categorical data
↪→ linear regression with qualitative covariates
↪→ each covariate has several modalities

I Sparse additive model
↪→ f∗(x) = f∗1(x1) + . . .+ f∗d(xd) ; f∗j ≡ 0 for most j
↪→ Projection on a basis:

f∗j (x) ≈
∑Kj
`=1 φ`,jψ`(x): group sparsity of φ = (φ`,j).



Assumptions on the model (II)

Low dimension volatility assumption
For q given functions r1, . . . , rq mapping Rd into R+, there is a
vector α∗ ∈ Rq such that r∗(x) =

∑q
`=1 α

∗
` r`(x) for almost every

x ∈ Rd , and S is the linear span of r1, . . . , rq .

[r∗(x1), . . . , r∗(xT )]> = Rα∗

REM: here and after q � T



Examples of application (II)
Low dimension volatility assumption

I Block-wise homoscedastic noise
↪→ r∗ is well approximated by a piecewise constant

function: time series modeling (smooth variations over time),
image processing (neighboring pixels are often corrupted by
noise levels of similar magnitude).

I Periodic noise-level
↪→ r∗ belongs to the linear span of a few trigonometric

functions: meteorology (seasonal variations), image processing
(electronic disturbance of repeating nature, caused for
instance by an electric motor).
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Penalized log-likelihood formulation

I penalized log-likelihood used for defining the group-Lasso
I Tuning parameter: λ = (λ1, . . . , λK ) ∈ RK

+

Introduce the T × q matrix R = (r`(xt))t,`
The cost function becomes PL(φ,α):

PL(φ,α) = −
T∑

t=1
log(Rt,:α) + 1

2

T∑
t=1

(
ytRt,:α−X t,:φ

)2
+

K∑
k=1

λk
∣∣X :,Gk φGk

∣∣
2

I REM: use penalty
K∑

k=1
λk
∣∣X :,Gk φGk

∣∣
2 instead of

K∑
k=1

λk
∣∣φGk

∣∣
2

Simon and Tibshirani (2012)



Optimization considerations

I Minimization of PL can be seen as a log-det problem
↪→ But higher computational complexity than Linear

Programming (LP) and SOCP
I Reduce computation cost

↪→ Dantzig Selector arguments;
↪→ First-order conditions:

∀k ∈ {1, . . . ,K}, ∂

∂φGk

PL(φ,α) = 0 (1)

∀` ∈ {1, . . . , q}, ∂

∂α`
PL(φ,α) = 0 (2)



First order conditions (1)
I ∀k ∈ {1, . . . ,K}, ∂

∂φGk
PL(φ,α) = 0 implies:

−X>:,Gk

(
diag(Y )Rα−Xφ

)
+ λkX>:,Gk

X:,Gk φ:,Gk∣∣X:,Gk φ:,Gk

∣∣
2

= 0

↪→ True if mink |X :,Gk φ:,Gk |2 6= 0
↪→ Difficult problem: non-linear part

I Equivalence with

ΠGk (diag(Y )Rα−Xφ) = λkX:,Gk φGk/|X:,Gk φGk |2

ΠGk = X:,Gk (X>:,Gk
X:,Gk )+X>:,Gk

: projector on Span(X:,Gk )

"Convexification" :
∣∣ΠGk (diag(Y )Rα−Xφ)

∣∣
2 ≤ λk



First order conditions (2)

I ∀` = 1, . . . , q, ∂
∂α`

PL(φ,α) = 0 implies:
∃ ν ∈ RT

+ such that

−
∑T

t=1
Rt`

Rt,:α
+
∑T

t=1

(
ytRt,:α−X t,:φ

)
ytRt`−ν>R:,` = 0

and νtRt,:α = 0 for every t.

"Convexification" :
T∑

t=1

Rt`
Rt,:α

−
(
ytRt,:α−X t,:φ

)
ytRt` ≤ 0



Relaxation

Scaled Heteroscedastic Dantzig selector (ScHeDs)
Minimizing with respect to (φ,α) ∈ Rp × Rq the problem

min
φ,α

K∑
k=1

λk
∣∣X:,Gk φGk

∣∣
2, s.t.

∣∣∣ΠGk

(
diag(Y )Rα−Xφ

)∣∣
2 ≤ λk , ∀k ∈ {1, . . . ,K};

T∑
t=1

Rt`

Rt,:α
−
(
ytRt,:α−X t,:φ

)
ytRt` ≤ 0, ∀` ∈ {1, . . . , q};

Theorem: ScHeDs can be solved by an SOCP.
REM: The feasible set of this problem is not empty and contains, in
particular, all the minimizers of the penalized log-likelihood.



Homoscedastic case

Scaled Homoscedastic Dantzig selector (ScHeDs)
Minimizing with respect to (φ, ρ) ∈ Rp × R the problem

min
φ,ρ

K∑
k=1

λk
∣∣X:,Gk φGk

∣∣
2, s.t.

∣∣∣ΠGk

(
diag(Y )ρ−Xφ

)∣∣
2 ≤ λk , ∀k ∈ {1, . . . ,K};

T − ρ
(
Yρ−Xφ

)>Y ≤ 0,



Comments on the procedure

I Degrees of freedom:
↪→ Many tuning parameters in the procedure
↪→ Theory: λk = λ0

√rk with λ0 > 0 and rk = rank(X:,Gk )
↪→ Most papers use λk ∝

√
|Gk | (k = 1, . . . ,K )

I Bias correction, practical improvement:
↪→ Classical two-steps methods:

i) our algorithm with λk = λ0
√rk (k=1,. . . ,K)

ii) Least squares on the selected variables (λ = 0)



Comments on the implementation

Several off-the-shelves toolboxes (for instance in Matlab) exist to
deal with SOCP

I Sedumi Sturm (1999) : popular interior point method
http://sedumi.ie.lehigh.edu/

↪→ highly accurate solution for moderately large datasets,
e.g. p,T ≤ 2000

I Tfocs Becker et al. (2011) : first-order proximal method
http://cvxr.com/tfocs/

↪→ less accurate (but do we need high accuracy in a
noisy setting?)
BUT can handle large dimension,
e.g. p = 5000 and T = 3000
REM: early stopping could lead to better solutions than
Sedumi

http://sedumi.ie.lehigh.edu/
http://cvxr.com/tfocs/


Homoscedastic noise
Data: 500 repetitions:

I Design matrix: X ∈ RT×p i.i.d. entries N (0, 1)

I Noise vector: RT 3 ξ∼ N (0T , I) independent of X; σt ≡ σ∗

I Regression vector: β0 = [1i∗ , 0p−i∗ ]>;

↪→ permutation of the entries of β0 gives β∗;

I Response vector: Y = Xβ∗ + σ∗ξ.

Setting: 8 different settings varying (T , p, i∗, σ∗)

Challenger: Square-root Lasso

Tuning parameter: universal choice for both λ =
√

2 log(p) as
good in most cases as Cross Validation (cf. Sun and Zhang
(2012) )



Experiment with bias correction for the two methods:

ScHeDs |β̂ − β∗|2 |̂i − i∗| 10|σ̂ − σ∗|
( T , p, i∗, σ∗) Ave StD Ave StD Ave StD

(100, 100, 2, .5) .06 .03 .00 .00 .29 .21
(100, 100, 5, .5) .11 .08 .01 .12 .32 .37
(100, 100, 2, 1) .13 .07 .03 .16 .57 .46
(100, 100, 5, 1) .28 .23 .10 .33 .77 .68
(200, 100, 5, .5) .08 .02 .00 .00 .23 .16
(200, 100, 5, 1) .16 .05 .00 .01 .09 .29
(200, 500, 8, .5) .09 .03 .00 .00 .22 .16
(200, 500, 8, 1) .21 .11 .03 .17 .48 .43

Square-root Lasso |β̂ − β∗|2 |̂i − i∗| 10|σ̂ − σ∗|
( T , p, i∗, σ∗) Ave StD Ave StD Ave StD

(100, 100, 2, .5) .08 .06 .19 .44 .32 .23
(100, 100, 5, .5) .12 .04 .18 .42 .33 .24
(100, 100, 2, 1) .16 .10 .19 .44 .59 .48
(100, 100, 5, 1) .25 .16 .21 .43 .68 .47
(200, 100, 5, .5) .09 .03 .21 .45 .24 .17
(200, 100, 5, 1) .18 .07 .21 .48 .48 .32
(200, 500, 8, .5) .10 .03 .14 .38 .23 .17
(200, 500, 8, .5) .21 .07 .18 .40 .46 .34



Heteroscedastic (without blocks)

Data:

I Design matrix: X ∈ RT×p i.i.d. entries N (0, 1)

I Noise vector: RT 3 ξ∼ N (0T , I) independent of X
I Variances: piecewise constant with blocks of length T/10

1st block σt ≡ 8σ∗; 5th block σt ≡ 4σ∗;
9th block σt ≡ 5σ∗; others 7 blocks have σt ≡ σ∗;

I β∗ = (2, 3, 3, 3, 1.5, 1.5, 1.5, 0, 0, 0, 2, 2, 2, 0, · · · , 0)> ∈ Rp

I Response vector: yt = Xt,:β
∗ + σtξt .

Challenger: Square-root Lasso Belloni et al. (2011)
HRR (High dim. Heteroscedastic Regression) Daye et al. (2011)

Tuning parameters: “universal choice” λ =
√

2 log(p);
R: encodes blocks of size T/20 (i.e. q = 20)



Heteroscedastic noise

Prediction error ‖Xβ̂−Xβ∗‖2√
T (or ‖(Xφ̂)./(Rα̂)−Xβ∗‖2/

√
T )

Sqrt-Lasso Sqrt-Lasso Deb. Daye ScHeDs ScHeDs Deb.
T σ = 4, p = 500
100 6.37 5.92 2.99 5.61 6.17
200 6.26 4.48 2.44 4.89 3.75
500 3.75 2.15 2.36 2.33 2.33
T σ = 6, p = 500
100 7.67 7.67 3.75 6.44 5.43
200 6.82 6.32 2.34 4.54 3.21
500 5.73 3.92 8.24 2.98 2.34
T σ = 8, p = 500
100 7.55 7.55 3.96 6.69 6.16
200 6.68 6.46 2.90 4.62 4.68
500 6.53 5.23 10.21 3.91 3.20
T σ = 10, p = 500
100 7.53 7.53 4.53 5.99 7.63
200 6.84 6.84 4.88 5.92 4.95
500 6.55 5.31 5.21 3.94 3.52



Heteroscedastic noise

Prediction error ‖Xβ̂−Xβ∗‖2√
T (or ‖(Xφ̂)./(Rα̂)−Xβ∗‖2/

√
T )

Sqrt-Lasso Sqrt-Lasso Deb. Daye ScHeDs ScHeDs Deb.
T σ = 4, p = 200
100 6.00 5.18 2.20 5.53 5.80
200 6.05 5.53 1.88 4.90 4.74
500 4.08 2.06 2.26 2.55 2.21
T σ = 6, p = 200
100 7.77 7.77 6.96 6.57 7.14
200 6.75 6.17 2.97 5.02 3.63
500 5.08 2.78 3.80 2.77 2.64
T σ = 8, p = 200
100 7.28 7.28 9.35 6.38 4.99
200 6.94 6.94 5.96 4.61 3.25
500 5.46 5.10 4.95 3.59 2.94
T σ = 10, p = 200
100 6.01 6.91 5.14 5.30 9.15
200 7.14 7.14 11.11 5.52 5.12
500 6.53 6.43 6.07 4.21 3.46



Real data: temperature in Paris
Data: daily temperature in Paris from 2003 to 2008;

↪→ National Climatic Data Center (NCDC).
I Response variable yt : the difference of temperature between

two successive days.
I Covariates xt = (t,ut): 17 dimensional vector (16+1)

↪→ time t;
↪→ increments of temperature over the past 7 days;
↪→ maximal intraday variation of temperature over the past

7 days;
↪→ wind speed of the day before.

Construction of R: T × 11 matrix with columns r`.

r1(xt) = 1; r2(xt) = t;

r3(xt) = 1/(t + 2× 365)
1
2 ;

r`(xt) = 1 + cos(2π(`− 3)t/365); ` = 4, . . . , 7;
r`(xt) = 1 + cos(2π(`− 7)t/365); ` = 8, . . . , 11.



Construction of X: t × 2176 matrix with columns fj .

χm,m′(ut) = um
t um′

t , with 1 ≤ m ≤ m′2 and m + m′ = 2;
ψ1(t) = 1;
ψ`(t) = t1/(`−1), ` = 2, 3, 4;
ψ`(t) = cos(2π(`− 4)t/365); ` = 5, . . . , 10;
ψ`(t) = sin(2π(`− 10)t/365); ` = 11, . . . , 16.

↪→ Time-varying second-order polynomial in ut :

fj(t) = ψ`(t)× χm,m′(ut);
|{fj}| = 16× 16× 17/2 = 2176.

Construction of groups: 136 groups of 16 functions

Gm,m′ = {ψ`(t)× χm,m′(ut) : ` = 1, . . . , 16}.

. This construction is arbitrary.



Results

Samples:

↪→ Training set: temperatures from 2003 to 2007 (that is, 2172
values);
↪→ Test set: temperatures from 2008 (that is, 366 values, leap

year).

Conclusions of the study:

I Dimension reduction: from 2176 to 26;
I Sign estimation: 62% of right estimation;
I Volatility estimation: the oscillation of the temperature during

the period between May and July is significantly higher than
in March, September and October;



Illustration
1) Increments observed in 2008;
2) Our prediction of these increments;
3) Noise level estimation.
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Finite sample risk bound
Theorem
Under the (GRE) + assumptions on signal/noise ratio for any
ε > 0, w.p. 1− ε, the ScHeDs estimator satisfies

∣∣X(φ̂− φ∗)
∣∣
2 -

1
κ

√
iφ∗ + |K∗| log(K

ε
) +

√
q log(q

ε
)

D3/2
T ,δ

∣∣R(α̂−α∗)
∣∣
2

|Rα∗|∞
-

1
κ

√
iφ∗ + |K∗| log(K

ε
) +

√
q log(q

ε
)

)D3/2
T ,δ

with DT ,δ = log(T
δ ) and iφ∗ =

K∑
k=1

rank(X:,Gk)

REM:
I assumptions on the signal/noise ratio only needed for the

theorem, not for the construction of the estimator.



Summary

New procedure named ScHeDs:

I Suitable for fitting the heteroscedastic regression model

I Simultaneous estimation of the mean and the variance
functions;

I Takes into account group sparsity;

I Relaxation of first-order conditions for maximum penalized
likelihood estimation
↪→ existence of a solution;
↪→ convex problem – second-order cone programming

I Competitive with state-of-the art algorithms
↪→ applicable in a much more general framework.
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SOCP reformulation

min
K∑

k=1
λkuk

subject to
∀k = 1, · · · ,K

∣∣X :,Gk φGk

∣∣
2 ≤ uk ,

∀k = 1, · · · ,K ,
∣∣∣ΠGk

(
diag(Y )Rα−Xφ

)∣∣
2 ≤ λk ,

R>v ≤ R> diag(Y )(diag(Y )Rα−Xφ);
∀t = 1, · · · ,T ,

∣∣[vt ; Rt,:α;
√

2
]∣∣

2 ≤ vt + Rt,:α;



Assumption
Some notations:

K∗ =
{

k :
∣∣φ∗Gk

∣∣
1 6= 0

}
,

Jφ∗ =
⋃

k∈K∗
Gk , iφ∗ =

∑
k∈K∗

∣∣Gk
∣∣,

Γ(K) =

δ ∈ Rp :
∑

k∈Kc
λk
∣∣X:,Gk δGk

∣∣
2 ≤

∑
k∈K

λk
∣∣X:,Gk δGk

∣∣
2

 .
Let 1 ≤ b ≤ K be a bound on the group sparsity:

∣∣Jφ∗∣∣ ≤ b

Group Restricted Eigenvalue Condition (GREC)

∃κ,∀δ ∈ Γ(K) \ {0}, s.t.
∣∣K∣∣ ≤ K∗, ∣∣Xδ

∣∣2
2 ≥ κ

2T
∑
k∈K

∣∣X:,Gk δGk

∣∣2
2

REM: extension of the RE Bickel et al. (2009)



Assumption signal/noise ratio
Define

C1 = min
`=1,...,q

1
T
∑
t∈T

r2
t`(X t,:φ

∗)2

(Rt,:α∗)2 ,

C2 = max
`=1,...,q

1
T
∑
t∈T

r2
t`

(Rt,:α∗)2 ,

C3 = min
`=1,...,q

1
T
∑
t∈T

rt`
(Rt,:α∗)

.

We denote C4 = (
√

C2 +
√

2C1)/C3 and

max
t=1,··· ,T

(Rt,:α̂)
(Rt,:α∗)

≤ D̂1

The constant in the oracle inequalities satisfies:

DT ,δ = C4D̂1(|Xφ∗|2∞ + log(T
δ

))
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