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▶ C. Garcin et al. (2021). “Pl@ntNet-300K: a plant image dataset with high label
ambiguity and a long-tailed distribution”. Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks



3Current main research topic
ML for citizen science / Pl@ntNet

A citizen science platform using machine learning to
help people identify plants with their mobile phones

Website: https://plantnet.org/

https://plantnet.org/


4Pl@ntNet
Usage and popularity (growing every day!)

▶ Start in 2011, now 25M users
▶ 200+ countries
▶ Up to 2M image uploaded/day
▶ 45 000 species
▶ 750M total images
▶ 10 M labeled / validated



5Key concept of Pl@ntNet
Cooperative Learning
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7A need for new benchmarks

Popular datasets limitations:

▶ structure of label often too simplistic (CIFAR-10, CIFAR-100)
▶ might be too clean (tasks easy to discriminate)
▶ might be too well-balanced (same number of images per class)

Motivation:
release a large-scale dataset sharing similar features as the Pl@ntNet
dataset to foster research in plant identification =⇒ Pl@ntNet-300K(1)

(1) C. Garcin et al. (2021). “Pl@ntNet-300K: a plant image dataset with high label ambiguity and a long-tailed distribution”. Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks.
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8Asymetry of errors in Pl@ntNet
Intra-class variability: same label/species but very diverse images

Guizotia
abyssinica

Diascia
rigescens

Lapageria
rosea

Casuarina
cunninghamiana

Freesia
alba

Based on pictures only, plant species are challenging to discriminate!



9Asymetry of errors in Pl@ntNet
Inter-class ambiguity: different species but similar images

Cirsium
rivulare

Chaerophyllum
aromaticum

Conostomium
kenyense

Adenostyles
leucophylla

Sedum
montanum

Cirsium
tuberosum

Chaerophyllum
temulum

Conostomium
quadrangulare

Adenostyles
alliariae

Sedum
rupestre

Some species are visually similar (especially within genus)



10Sampling bias



10Sampling bias
Geographic

Spatial density of images collected by Pl@ntNet :



11Sampling bias
Usefulness for humans

Top-5 most observed plant species in Pl@ntNet:

(a) Prunus domestica (b) Rosa chinensis (c) Capsicum annuum (d) Kalanchoe blossfeldiana (e) Cucumis sativus



12Sampling bias
Esthetic

8 548 observations

Centaurea jacea

VS.

6 observations

Cenchrus agrimonioides



13Sampling bias
Size

7 800 observations

Magnolia grandiflora

302 observations

Moehringia trinervia
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15Construction of Pl@ntNet-300K
Subsampling genera preserve dataset characteristics

Randomly
sub-sample
10% of genera

Sample at genus level to preserve intra-genus ambiguity
(use hierarchical structure)



16Long tailed distribution
Preserved with Subsampling of genera
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80% of species account for only 11% of images
⇐⇒

20% of species account for 89% of images

Reminder: total = 45 000 plant species (out of 300 000)
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17Details on Pl@ntNet-300K
size and links

▶ 306 146 color images
▶ 32 GB
▶ Labels: K = 1 081 species
▶ 2 079 003 volunteers "workers"

Zenodo, 1 click download

https://zenodo.org/record/5645731

Code to train models:

https://github.com/plantnet/PlantNet-300K

https://zenodo.org/record/5645731
https://github.com/plantnet/PlantNet-300K


18From workers quality to label quality

Image labeling difficulty could have a huge impact on learning:

▶ Removing very difficult tasks could be useful

• for dataset inspection/visualization
• to clean a dataset
• for training performance(2)

Hint: usually, such tasks are associated with mislabeling

▶ Next step:
We have seen how to assert how good is a worker, but how can we
assert the labeling difficulty of an image?

(2) G. Pleiss et al. (2020). “Identifying mislabeled data using the area under the margin ranking”. NeurIPS.



19Remember: in data we trust?

. . . but labeling errors are common

CIFAR10(3)

y⋆ = cat

Quickdraw(4)

y⋆ = T-shirt

MNIST(5)

y⋆ = 6

(3) A. Krizhevsky and G. Hinton (2009). Learning multiple layers of features from tiny images. Tech. rep. University of Toronto.
(4) (N.d.). https://github.com/googlecreativelab/quickdraw-dataset.
(5) Y. LeCun et al. (1998). “Gradient-based learning applied to document recognition”. Proceedings of the IEEE 86.11, pp. 2278–2324.

https://github.com/googlecreativelab/quickdraw-dataset
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20Data quality assesment
Classical supervised learning

Assuming a single hard label (standard supervised settings):
• Classify data points quality with a curated set of probes(6)

• Confident learning(7): estimate joint distribution between noisy (given)
and true labels (unknown)

• Self learning(8): train a model + extract features and similarity metric on
a subset + retrain with modified weighted loss

• Representative Sampling (CleanNet(9)): trapping set + encoders + task
similarity with constraints on loss

• Our focus here: study the learning dynamic,
▶ AUM(10) (Area Under the Margin): study margin during training

(6) S. A. Siddiqui et al. (2022). Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics.
(7) C. Northcutt, L. Jiang, and I. Chuang (2021). “Confident learning: Estimating uncertainty in dataset labels”. J. Artif. Intell. Res. 70, pp. 1373–1411.
(8) J. Han, P. Luo, and X. Wang (2019). “Deep self-learning from noisy labels”. ICCV, pp. 5138–5147.
(9) K.-H. Lee et al. (2018). “Cleannet: Transfer learning for scalable image classifier training with label noise”. Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 5447–5456.
(10) G. Pleiss et al. (2020). “Identifying mislabeled data using the area under the margin ranking”. NeurIPS.



21Deep learning
Notation mostly
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▶ From an image, get a score vector z = (z1, . . . , zK)
⊤ ∈ RK

▶ zk : score (logit) for class k
▶ σk : probability (softmax) for class k
▶ Train for T epochs (say with SGD)
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22Area under the margins(11)

A step back with one label per task
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For each image
▶ its difficulty is reflected by how quickly the network can learn to

discriminate its class
▶ average the difference between the "true" logit value and the one

associated with the most likely one along epochs

(11) G. Pleiss et al. (2020). “Identifying mislabeled data using the area under the margin ranking”. NeurIPS.



23Dissecting the AUM
Building to the crowdsourced extension

Settings:
▶ (x1, y1), . . . , (xn, yn) ∈ X × [K] (images, labels) pairs
▶ Classifier: at epoch t ∈ [T], z(t)(xi) ∈ RK a vector of scores (logits)

AUM(xi, yi) =
1
T

T∑
t=1

Margin between scores:
content of Hinge loss︷ ︸︸ ︷[

z(t)
yi (xi) − max

ℓ̸=yi
z(t)
ℓ (xi)

]
Score of assigned label Other maximum score

Average = Stability

Challenging for crowdsourcing:
▶ No single yi, multiple y(j)

i : one for each worker wj answering task xi
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24Dissecting the AUM
On the way to a crowdsourced extension

Settings:

▶ (xi, y(j)
i )i∈[ntask],j∈[nworker]: (task,labels) crowdsourced pairs

▶ Recall: A(xi) := {j ∈ [nworker] : worker j answered task i}

ÃUM(xi) =
1

|A(xi)|
∑

j∈A(xi)

1
T

T∑
t=1

Margin between scores:
content of Hinge loss︷ ︸︸ ︷[

z(t)
y(j)

i
(xi) − max

ℓ ̸=y(j)
i

z(t)
ℓ (xi)

]
Score of assigned label by worker wj Other maximum score

Averaging workers AUM

• Multiple answers =⇒ average each AUM (independently)

Reliability issue:
• Not all workers are equally gifted =⇒ weight AUM per worker
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25Dissecting the AUM
Toward a crowdsourced extension

• Introduce weights s(j)(xi) as the trust score in worker j for task xi

˜̃
AUM(xi) =

1
S

∑
j∈A(xi)

s(j)(xi)
1
T

T∑
t=1

Margin between scores:
content of Hinge loss︷ ︸︸ ︷[

z(t)
y(j)

i
(xi) − max

ℓ ̸=y(j)
i

z(t)
ℓ (xi)

]
Score of assigned label by worker wj Other maximum score

Trust score of wj for xi

Weighted average of AUM

with S =
∑

j∈A(xi)

s(j)(xi) (normalization factor)



26The WAUM
a crowdsourced extension

Modifying the margin:
• Better margin (in theory, for top-k classification(12))

Change logit to softmax scores:
• avoid scale effects for scores and huge variation with multiple labels(13)

Notation:
• σ(xi) = softmax(z(xi)) (in simplex)
• Softmax ordered: σ[1](xi) ≥ · · · ≥ σ[K](xi) > 0

WAUM(xi) :=
1
S

∑
j∈A(xi)

s(j)(xi)
1
T

T∑
t=1

Margin between scores:
content of Hinge loss︷ ︸︸ ︷[

σ
(t)
y(j)

i
(xi) − σ

(t)
[2]

(xi)

]
Probability of assigned label by worker wj 2nd max. probability

Trust score of wj for xiWeighted average of AUM

(12) M. Lapin, M. Hein, and B. Schiele (2016). “Loss functions for top-k error: Analysis and insights”. CVPR, pp. 1468–1477; F. Yang and S. Koyejo (2020). “On
the consistency of top-k surrogate losses”. ICML, pp. 10727–10735.
(13) C. Ju, A. Bibaut, and M. van der Laan (2018). “The relative performance of ensemble methods with deep convolutional neural networks for image

classification”. J. Appl. Stat. 45.15, pp. 2800–2818.
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27Weights in the WAUM
Leverage both tasks and labels

Choosing s(j)(xi):
• if s(j)(xi) = 1 all workers have the same weight
• if s(j)(xi) = cj the weights only depend on the worker
• DS(14) algorithm, etc.

Our chosen worker/task score:
• Score of the form: "worker term × task term" (similar to GLAD(15))
• Estimate ability thanks to confusion matrices π̂(j) (with DS)
• Use softmax scores to measure label confidence

s(j)(xi) =
〈

diag(π̂(j)) | σ(T)(xi)
〉
∈ [0, 1]

Worker j overall ability Label distribution for task i

(14) A. Dawid and A. Skene (1979). “Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm”. J. R. Stat. Soc. Ser. C. Appl. Stat. 28.1,
pp. 20–28.

(15) J. Whitehill et al. (2009). “Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise”. NeurIPS. vol. 22.
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28Computing the WAUM
The pipeline summarized

• Estimate confusion matrices π̂(j) ∈ RK×K , for all j ∈ [nworker]

• Train a network on all crowdsourced task/label pairs: (xi, y(j)
i )

• Compute AUM(xi, y(j)
i ) =

1
T

T∑
t=1

[
σ
(t)
y(j)

i
(xi)− σ

(t)
[2]

(xi)

]
• Compute trust scores s(j)(xi)

• For each task compute WAUM(xi) =

∑
j∈A(xi)

s(j)(xi)AUM(xi, y(j)
i )∑

j′∈A(xi)

s(j′)(xi)

Usage (for learning):
• Prune xi’s with WAUM(xi) below quantile qα (say α = 0.1)
• Estimate confusion matrices π̂(j) on pruned training dataset

• Get soft labels: normalize ŷi =

( ∑
j∈A(xi)

π̂
(j)
k,k1{y(j)

i =k}

)
k∈[K]

∈ RK

• Train a classifier on the pruned dataset (with soft labels)
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( ∑
j∈A(xi)

π̂
(j)
k,k1{y(j)

i =k}

)
k∈[K]

∈ RK

• Train a classifier on the pruned dataset (with soft labels)



28Computing the WAUM
The pipeline summarized

• Estimate confusion matrices π̂(j) ∈ RK×K , for all j ∈ [nworker]
• Train a network on all crowdsourced task/label pairs: (xi, y(j)

i )

• Compute AUM(xi, y(j)
i ) =

1
T

T∑
t=1

[
σ
(t)
y(j)

i
(xi)− σ

(t)
[2]

(xi)

]
• Compute trust scores s(j)(xi)

• For each task compute WAUM(xi) =

∑
j∈A(xi)

s(j)(xi)AUM(xi, y(j)
i )∑

j′∈A(xi)

s(j′)(xi)

Usage (for learning):
• Prune xi’s with WAUM(xi) below quantile qα (say α = 0.1)
• Estimate confusion matrices π̂(j) on pruned training dataset

• Get soft labels: normalize ŷi =
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29Simulation with circles
Binary setting
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• Workers = simulated classifiers (answering 500 tasks)
• Normalized trust scores
• Neural Network: 3-dense layers’ artificial neural network (30, 20, 20)
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30Simulation with circles
Three classes
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31How can we use the WAUM?
Pruning to avoid learning of too ambiguous data
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32Results on CIFAR10H
Improved mislabeled detections: worst aum/waum
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33Intermission

Bokeh application of the AUM/WAUM to the CIFAR10H dataset.
(see horse, cat and deer for instance)



34Prediction performance
CIFAR-10H

Generalization performance and calibration error (with a Resnet-18):

Aggregation method Test accuracy (on CIFAR10-train) ECE (expected calibration error)

MV 69.533 ± 0.84 0.175 ± 0.01
Naive soft 72.149 ± 2.74 0.132 ± 0.03
DS (vanilla) 70.268 ± 0.93 0.173 ± 0.01
DS (spam identification) 70.053 ± 0.81 0.174 ± 0.01
GLAD 66.569 ± 8.48 0.173 ± 0.01
WAUM 72.747 ± 1.93 0.124 ± 0.01

Remark: ECE(16) Expected Calibration Error, the smaller the better

(16) C. Guo et al. (2017). “On calibration of modern neural networks”. ICML, p. 1321.



35"Can I use the WAUM in my framework?"
Ablation study (LabelMe)

Aggregation method Test Accuracy ECE
WDS 85.6 0.162
WAUM + WDS 87.1 0.129

GLAD(17) 87.1 0.119
WAUM + GLAD 87.6 0.123
CoNAL(18)(lambda=0) 88.1 0.119
WAUM + CoNAL(lambda=0) 89.2 0.108
CoNAL(lambda=1e-4) 86.2 0.135
WAUM + CoNAL(lambda=1e-4) 90.0 0.099

(17) J. Whitehill et al. (2009). “Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise”. NeurIPS. vol. 22.
(18) Z. Chu, J. Ma, and H. Wang (2021). “Learning from Crowds by Modeling Common Confusions.”. AAAI, pp. 5832–5840.
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35"Can I use the WAUM in my framework?"
Ablation study (Music dataset)

Aggregation method Test Accuracy ECE
WDS 60.2 0.348
WAUM + WDS 63.1 0.377
GLAD(17) 61.5 0.361
WAUM + GLAD 61.5 0.355
CoNAL(18)(lambda=0) 64.2 0.340
WAUM + CoNAL(lambda=0) 64.5 0.265
CoNAL(lambda=1e-4) 64.2 0.361
WAUM + CoNAL(lambda=1e-4) 64.4 0.274

(17) J. Whitehill et al. (2009). “Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise”. NeurIPS. vol. 22.
(18) Z. Chu, J. Ma, and H. Wang (2021). “Learning from Crowds by Modeling Common Confusions.”. AAAI, pp. 5832–5840.



36Conclusion

Take home message(s)
• Citizen science challenges: many and varied (need more attention)

• Crowdsourcing / Label uncertainty: helpful for data curation
• Improved data quality ⇒ improved learning performance
• Toolbox: https://peerannot.github.io/
• Some benchmarks: https://benchopt.github.io/

Future work
▶ Release a Pl@ntnet crowdsourced dataset (2M workers)
▶ Leverage gamification for more quality labels theplantgame.com

https://peerannot.github.io/
https://benchopt.github.io/
theplantgame.com
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38An alternative: GLAD(19)

Generative model of Labels, Abilities, and Difficulties

• DS assumption: errors only come from workers (no task modeling)

GLAD: incorporating task difficulty

Model labeling errors as a function of worker ability and task difficulty:
▶ worker j has an ability αj ∈ R
▶ task i has a difficulty βi ∈ R⋆

+

P
(

y(j)
i = y⋆i |αj, βi

)
=

1
1 + e−αjβi

Note: assume uniform errors on other labels

(19) J. Whitehill et al. (2009). “Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise”. NeurIPS. vol. 22.
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39ECE(20)

Expected Calibration Error

For x ∈ Xtrain = {x1, . . . , xntask}, let σ(x) ∈ ∆K−1 (softmax output)

Split [0, 1] into M(= 15) bins I1, . . . , IM of size 1
M : Im = (m−1

M , m
M ], for m ∈ [M]

Denote Bm = {x ∈ Xtrain : σ[1](x) ∈ Im} the tasks whose predicted
probabilities are in the m-th bin

Define accuracy and confidence:
acc(Bm) =

1
|Bm|

∑
i∈Bm

1{σ[1](xi)=yi} and conf(Bm) =
1

|Bm|
∑
i∈Bm

σ[1](xi) .

Then, the Expected Calibration Error (ECE) reads:

ECE =
M∑

m=1

|Bm|
ntask

|acc(Bm)− conf(Bm)| .

Perfect calibrattion : ECE = 0 (accuracy = confidence for each subset Bm)

(20) C. Guo et al. (2017). “On calibration of modern neural networks”. ICML, p. 1321.
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