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2Plant classification with Pl@ntnet
https://plantnet.org/

I ML assisted citizen science
I > 40,000 species
I > 10,000,000 annotated images
I > 1Tb of data =⇒ Reduction to share with community

https://plantnet.org/
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5Long tailed distribution
Preserved with sampling of genera
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Pl@ntNet-300K dataset
Full Pl@ntNet dataset

80% of species account for only 11% of images



6Intra-class variability
same label/species but very diverse images

Guizotia
abyssinica

Diascia
rigescens

Lapageria
rosea

Casuarina
cunninghamiana

Freesia
alba

Plant species are challenging to model based on pictures only!



7Inter-class ambiguity
different labels/species but similar images

Cirsium
rivulare

Chaerophyllum
aromaticum

Conostomium
kenyense

Adenostyles
leucophylla

Sedum
montanum

Cirsium
tuberosum

Chaerophyllum
temulum

Conostomium
quadrangulare

Adenostyles
alliariae

Sedum
rupestre

Some species are visually similar (especially within genus)
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9Construction of Pl@ntNet-300K
Subsampling of genera

Randomly
sub-sample
10% of genera

Sample at genus level to preserve intra-genus ambiguity



10Links

Zenodo, 1 click download

https://zenodo.org/record/5645731

Code to train models:

https://github.com/plantnet/PlantNet-300K

https://zenodo.org/record/5645731
https://github.com/plantnet/PlantNet-300K
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12Limitation of a single proposition

With high class ambiguity, returning a
single class is hazardous



13Motivation of Top-K
From a single to many predicted labels

Possible solution: return the K "most likely" species for all images

I Pros for a small K:
ease user experience, handle screen size constraints (mobiles)

Pl@ntNet returns species names + most similar images to the query:
narrows down the ambiguity

I Pros for a large K:
ensure the true class lies in the K returned classes

Choice of K :

I task-dependant, often K = 3, 5, . . . or even larger for challenging tasks
I considered fixed by the user for the talk (not tuned)
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15Notation: multi-class setting

I L: number of classes, [L] := {1, . . . , L}, label space
Pl@ntNet-300K: L = 1 081 species

I X : Feature space
Pl@ntNet-300K: X = R256×256×3

I (Xi, Yi) ∈ X × [L], i = 1, . . . , n i.i.d. according to P (unknown)
Pl@ntNet-300K: 306 146 images

I K ∈ [L] is a fixed parameter used for top-K

I Set-valued classifier
Γ : X → 2[L]; 2[L] : set of all subsets of [L]

Mathematical goal:
minimize the risk P(Y /∈ Γ(X)) with cardinality constraints on Γ(X)



16Bayes / oracle solutions(1)

Return sets of classes

Notation:
I p`(x) , P(Y = `|X = x) : conditional label probability given an input x
I Decreasing ordering : p(1)(x) ≥ · · · ≥ p(L)(x),

i.e., (1) is the most likely class for x, (2) the second most likely class, etc.

Below we also use: p(1)(x) = pi1(x)(x), . . . , p(L)(x) = piL(x)(x)

I Top-K classification:

Γ∗top-K ∈ arg min
Γ

P(Y /∈ Γ(X)) =⇒ Γ∗top-K(x) = {i1(x), . . . , iK(x)}

s.t. |Γ(x)| ≤ K, ∀x ∈ X

Interpretation:
the optimal top-K classifier returns the K most likely classes

(1) M. Lapin, M. Hein, and B. Schiele (2015). “Top-k multiclass SVM”. In: NeurIPS, pp. 325–333.



17Deep learning
Notation mostly
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I From an image, get a score vector s = (s1, . . . , sL)> ∈ RL (aka logits)
I sk : score for class k
I Reordered scores: s(1) ≥ s(2) ≥ · · · ≥ s(L)

I (Top-1) prediction: output the "most likely" class, associated to s(1) or p(1)
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18Deep learning
Standard case

I Training: cross-entropy (CE) loss + Stochastic Gradient Descent (SGD)

I `CE(s, y) = − log
( esy∑

k∈[L] esk

)

Example : L = 3, K = 2, y = 3
(Normalized) level set of s 7→ `CE(s, y):

s = (2, 0, 0)> s = (0, 2, 0)>

s = (0, 0, 2)>

0.000

0.143

0.286

0.429

0.571

0.714

0.857

1.000

I Not designed to optimize top-K accuracy
I Can we do better than cross entropy ?
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19Notation and properties(2) for top-K

For a score vector s ∈ RL:

Definition

topK : s 7→ s(K) (K-th largest score)

topΣK : s 7→
∑

k∈[K]

s(k) (sum of K largest scores)

Properties

I ∇topK(s) = arg topK(s) ∈ RL :
vector with a single 1 at the K-th largest coordinate of s, 0 o.w.

I ∇topΣK(s) = arg topΣK(s) ∈ RL :
vector with 1’s at the K-th largest coordinates of s, 0 o.w.

(2) F. Yang and S. Koyejo (2020). “On the consistency of top-k surrogate losses”. In: ICML. vol. 119, pp. 10727–10735.



20Illustration of top-K notation

Example on the following score vector: s =


4.0
−1.5
2.5
1.0


We have

top2(s) = 2.5 ∇top2(s) : = arg top2(s) =


0
0
1
0



topΣ2(s) = 4.0 + 2.5 = 6.5 ∇topΣ2(s) : = arg topΣ2(s) =


1
0
1
0


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22Top-K error

Objective: minimize top-K error (0/1 loss):

`K(s, y) = 1{topK (s)>sy}

Problem: piecewise constant function w.r.t. s, hard to optimize!!!

(Normalized) Level sets of s 7→ `K(s, y), L = 3, K = 2, y = 3.



23Reminder: binary hinge loss

I Binary case (L = 2): y = 1, y = −1
I Score s: predict y = 1 if s > 0, y = −1 otherwise

Objective: Minimize binary 0/1 error `0/1(s, y) = 1[sy < 0].
Upper bound of `0/1: `Hinge(s, y) = αmax(0, 1− 1

α sy) = α(1− 1
α sy)+

3 2 1 0 1 2 3
s

0

1

2

3

4

5

6

alpha 0.5
alpha 1.0
alpha 2.0
0/1 error

Larger margins ( 1
α ) require more confident predictions to achieve a zero loss



24Top-K hinge loss(3)

Motivation: surrogate top-K loss, similar to hinge loss in binary classification

`K
Hinge(s, y) =

(
1 + topK(s\y)− sy

)
+

where s\y is the vector s with coordinate y removed

Remark: 1 acts as a margin above

Limitations:
I Experimental: poor performance
I Theoretical: `K

Hinge is not top-K calibrated (more later)

s = (2, 0, 0)> s = (0, 2, 0)>

s = (0, 0, 2)>

0.000

0.143

0.286

0.429

0.571

0.714

0.857

1.000

(3) M. Lapin, M. Hein, and B. Schiele (2015). “Top-k multiclass SVM”. In: NeurIPS, pp. 325–333.
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26Top-K calibration

Question:
When minimizing a surrogate loss ` implies minimizing the top-K error `K ?

Answer: Yes, if ` is top-K calibrated
i.e., if the Bayes risk can only be attained by a score sharing the same top-K as
the underlying conditional probability distribution)

Integrated `-Risk for classifier f R`(f ) ,E(x,y)∼P[`(f (x), y)]

Integrated Bayes Risk R∗` , inf
f :X→RL

R`(f )



27Top-K consistency

Theorem(4)

` is top-K calibrated =⇒ ` is top-K consistent:

i.e., for any sequence of measurable functions f (n) : X → RL, we have:

R`
(

f (n)
)
→ R∗` =⇒ R`K

(
f (n)
)
→ R∗`K

where `K is the (0/1) top-K loss

Interpretation:
Minimizing a top-K calibrated loss implies minimizing the top-K error

Note: `CE is top-K calibrated, but not when restricted to linear classifiers
(for d ≤ 3, L ≤ 3, K ≤ 2).

(4) F. Yang and S. Koyejo (2020). “On the consistency of top-k surrogate losses”. In: ICML. vol. 119, pp. 10727–10735, Theorem 2.2.



28Top-K calibrated hinge loss(5)

A top-K hinge-loss that is top-K calibrated:

`K
Cal. Hinge(s, y) = (1 + topK+1(s)− sy)+

s = (2, 0, 0)> s = (0, 2, 0)>

s = (0, 0, 2)>

0.000

0.143

0.286

0.429

0.571

0.714

0.857

1.000

Better theoretical properties, but still fails with deep learning (more later)

Problem: s→ topK(s) non-smooth and sparse gradient

(5) F. Yang and S. Koyejo (2020). “On the consistency of top-k surrogate losses”. In: ICML. vol. 119, pp. 10727–10735.
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30Smooth top-K sum(6)

Definition

Motivation: topΣK is a non-smooth, function, smooth it!
I smoothing parameter ε > 0
I score s ∈ RL

Definition

The ε-smoothed version of topΣK :

topΣK,ε(s) , EZ[topΣK(s + εZ)]

Z : standard normal random vector, Z ∼ N (0, IdL)

(6) Q. Berthet et al. (2020). “Learning with differentiable perturbed optimizers”. In: NeurIPS.



31Smooth top-K sum
Proposition

Proposition

For a smoothing parameter ε > 0,
I The function topΣK,ε : RL → R is strictly convex, twice differentiable

and
√

K-Lipschitz continuous.
I The gradient of topΣK,ε reads:

∇stopΣK,ε(s) = E[arg topΣK(s + εZ)]

I ∇stopΣK,ε is
√

KL
ε -Lipschitz.

I When ε→ 0, topΣK,ε(s)→ topΣK(s).

I From non-smooth to smooth function with simple stochastic
perturbation

I When ε→ 0, recover the original function



32Smooth top-K
Definition

Reminder: topK(s) , topΣK(s)− topΣK−1(s)

Definition

For any s ∈ RL and K ∈ [L], the smoothed top-K at level ε is:

topK,ε(s) , topΣK,ε(s)− topΣK−1,ε(s)



33Smooth top-K
Proposition

Proposition

For a smoothing parameter ε > 0,
I topK,ε is 4

√
KL
ε -smooth.

I For any s ∈ RL, |topK,ε(s)− topK(s)| ≤ ε · CK,L, where
CK,L = K

√
2 log L.

I Smooth approximation of topK .
I Smoothness constant depending on ε and problem constants.
I When ε→ 0, recover initial top-K



34Table of Contents

Introduction

Pl@ntNet-300K

Top-K classification
Motivation
Notation
top-K losses
top-K calibration
top-K smoothing
top-K loss
imbalanced top-K loss

Experiments

Conclusion



35Noised top-K loss
Definition

Reminder: `K
Cal. Hinge(s, y) = (1 + topK+1(s)− sy)+

Definition

We define `K,ε
Noised bal. the noised balanced top-K hinge loss as:

`K,ε
Noised bal.(s, y) = (1 + topK+1,ε(s)− sy)+

Problem: Untractable: how to deal with the expectation in topK+1,ε(s) ?



36Practical implementation: forward pass

Solution: Draw B noise vectors Z1, . . . , ZB, with Zb
i.i.d.∼ N (0, IdL) for b ∈ [B].

topK,ε(s) = topΣK,ε(s)− topΣK−1,ε(s)

= EZ[topΣK(s + εZ)]− EZ[topΣK−1(s + εZ)]

Monte Carlo estimation :

t̂opK,ε,B(s) =
1
B

B∑
b=1

topΣK(s + εZb)− 1
B

B∑
b=1

topΣK−1(s + εZb)

Easy implementation with deep learning libraries e.g., Pytorch, Tensorflow



37Practical implementation: backward pass

Solution: Draw B noise vectors Z1, . . . , ZB, with Zb
i.i.d.∼ N (0, IdL) for b ∈ [B].

∇stopK,ε(s) = ∇stopΣK,ε(s)−∇stopΣK−1,ε(s)

= E[arg topΣK(s + εZ)]− E[arg topΣK−1(s + εZ)]

Monte Carlo estimation :

∇̂topK,ε,B(s) =
1
B

B∑
b=1

arg topΣK(s + εZb)− 1
B

B∑
b=1

arg topΣK−1(s + εZb)

Easy implementation with deep learning libraries e.g., Pytorch, Tensorflow



38Illustration example

L = 4, K = 2, B = 3, ε = 1.0, s =

[ 2.4
2.6
2.3
0.5

]
. We have topK(s) = 2.4 and

arg topK(s) =

[ 1
0
0
0

]
. Assume the three noise vectors sampled are:

Z1 =

[ 0.2
−0.1

0.1
0.3

]
, Z2 =

[ 0.1
0.1
−0.1

0.1

]
, Z3 =

[−0.1
−0.1

0.1
−0.1

]
.

The perturbed vectors are now:

s + εZ1 =

[
2.6
2.5
2.4
0.8

]
, s + εZ2 =

[ 2.5
2.7
2.2
0.6

]
, s + εZ3 =

[
2.3
2.5
2.4
0.4

]
.

t̂opK,ε,B(s) = (2.5 + 2.5 + 2.4)/3 = 2.47 ,

∇̂topK,ε,B(s) =
1
3

([
0
1
0
0

]
+

[ 1
0
0
0

]
+

[
0
0
1
0

])
=

 1
3
1
3
1
3
0

 .



39Noised top-K loss
Visualization

s = (2, 0, 0)> s = (0, 2, 0)>

s = (0, 0, 2)>

0.000

0.143

0.286

0.429

0.571

0.714

0.857

1.000

(a)`K,0.3,30
Noised bal. .

s = (2, 0, 0)> s = (0, 2, 0)>

s = (0, 0, 2)>

0.000

0.143

0.286

0.429

0.571

0.714

0.857

1.000

(b)`K,1,30
Noised bal. .
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41Imbalanced top-K loss

Modification: use larger margins for classes with few examples(7):

`
K,ε,B,my
Noised Imbal.(s, y) = (my + t̂opK+1,ε,B(s)− sy)+

(1)
Set my = C/n1/4

y , with ny the number of samples in the training set with class
y, and C a hyperparameter to be tuned on a validation set.
Intuition: add more emphasis on rarely seen examples

s = (2, 0, 0)> s = (0, 2, 0)>

s = (0, 0, 2)>

0.000

0.143

0.286

0.429

0.571

0.714

0.857

1.000

`K,0.1,30,1
Noised Imbal..

(7) K. Cao et al. (2019). “Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss”. In: NeurIPS. vol. 32, pp. 1565–1576.
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0.000

0.143

0.286

0.429

0.571

0.714

0.857

1.000

`K,0.1,30,5
Noised Imbal..

(7) K. Cao et al. (2019). “Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss”. In: NeurIPS. vol. 32, pp. 1565–1576.
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43CIFAR100 dataset

I 100 classes, 500 training images per class and 100 test images per class

https://www.cs.toronto.edu/~kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html
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45Influence of ε on top-K accuracy

ε 0.0 1e-4 1e-3 1e-2 1e-1 1.0 10.0 100.0

Top-5 acc. 19.38 14.84 11.4 93.36 94.46 94.24 93.78 93.12

CIFAR-100 best validation top-5 accuracy, DenseNet 40-40, `K=5,ε,B=10
Noised bal. .

I ε = 0 recovers `K
Cal. Hinge: bad performance

I ε large enough, relevant coordinates are updated, learning occurs
I Optimization robust to large values of ε



46Influence of B

B 1 2 3 5 10 50 100

Top-5 acc 94.28 94.2 94.46 94.52 94.24 94.64 94.52

I `5,0.2,B
Noised bal., CIFAR-100 dataset, DenseNet 40-40 model.

I B has little influence
I Using SGD increases the randomness (B noise vectors per batch)
I In practice set B to a small value e.g., B = 3
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48Macro-average definition

I Test set of examples Sn = {(x1, y1), . . . , (xn , yn )}
I ΓK : X → 2[K] learned top-K classifier (model) to evaluate
I Cj set of examples of class j: Cj = {` ∈ [L], y` = j}

Top-K accuracy: 1
n
∑n

i=1 1[yi ∈ ΓK(xi)]

Reflects the performance on classes with lots of examples

Macro-average Top-K accuracy: 1
L
∑L

j=1
1
|Cj|
∑
`∈Cj

1[y` ∈ ΓK(x`)]

Reflects the performance on all classes regardless of number of examples



49Cross-entropy baseline
Accuracy vs Macro-average accuracy
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Pl@ntNet-300K test performance for several neural networks: large gaps
due to long-tailed distribution



50Cross-entropy baseline
Influence of number of examples on accuracy

Number of images Mean bin accuracy

0− 10 0.09
10− 50 0.35

50− 500 0.59
500− 2000 0.79
> 2000 0.93

Test accuracy (ResNet50) w.r.t. number of images per class at training...

... (many) classes with few examples have low accuracy (hard to learn)



51Comparison of several losses

K `CE `K,τ
Smoothed Hinge

(8) `K,ε,B
Noised bal. focal(9) LDAM(10) `

K,ε,B,my
Noised imbal.

1 35.91 NA 35.44 37.87 40.54 42.36
3 58.91 50.41 59.06 59.96 63.50 64.77
5 69.05 50.71 66.97 69.91 72.23 72.95
10 78.08 46.23 76.08 78.88 80.69 80.85

Macro-average test top-K accuracy on Pl@ntNet-300K, ResNet-50.

I `K,τ
Smoothed Hinge gives unsatisfactory for imbalanced datasets

I Imbalanced losses: far better than balanced losses
I Class-wise margin is effective compared to constant margin:
`

K,ε,B,my
Noised imbal. outperforms other losses on Pl@ntNet-300K

(8) L. Berrada, A. Zisserman, and M. P. Kumar (2018). “Smooth Loss Functions for Deep Top-k Classification”. In: ICLR.
(9) T.-Y. Lin et al. (2017). “Focal Loss for Dense Object Detection”. In: ICCV, pp. 2999–3007.

(10) K. Cao et al. (2019). “Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss”. In: NeurIPS. vol. 32, pp. 1565–1576.



52Conclusion and perspectives

Conclusion
I A new loss for top-K classification: smooth a top-K calibrated one
I Suitable for training deep learning models
I Significant performance gains on real databases such as Pl@ntNet

(with high ambiguity & a long tail distribution)

Perpectives
I A fixed set size K is not ideal in practice

I Some species are easy to recognize while others are ambiguous
I Some images are very informative while others are not

I Set-valued classification with a varying set size could be more effective
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55CIFAR100: label noise injection

I Reminder: 20 superclasses each containing 5 classes
I Ex: Super class large carnivors contains the classes "bear", "leopard",

"lion", "tiger", "wolf"

For each image in the training set:

I With probability p, randomly sample label within the superclass
I With probability 1− p, keep the label unchanged

Possibly wrong class, but same superclass as original dataset.



56CIFAR100 results

Label noise p `CE `5,1.0
Smoothed Hinge `5,0.2,10

Noised bal.

0.0 94.24 94.34 94.35
0.1 90.39 92.08 92.03
0.2 87.67 90.22 90.68
0.3 85.93 88.82 89.58
0.4 83.74 87.40 87.48

I CIFAR-100 test Top-5 accuracy, DenseNet 40-40.
I When p > 0, `CE tries to fit corrupted labels while top-K losses merely

strives to get the super-class right.
I `K,ε,B

Noised bal. gives good performance and faster to train than `K,τ
Smoothed Hinge



57Summary of the different losses

Loss : `(s, y) Expression Param. Reference

`K (s, y) 1{topK (s)>sy} K

`CE(s, y) − ln
(

esy/
∑

k∈[L] esk
)

—

`K
Hinge(s, y)

(
1 + topK (s\y)− sy

)
+

K (Lapin, Hein, and Schiele 2015)

`K
CVXHinge(s, y)

(
1
K
∑

k∈[K] topk(1L − δy + s)− sy

)
+

K (Lapin, Hein, and Schiele 2015)

`K
Cal. Hinge(s, y) (1 + topK+1(s)− sy)+ K (Yang and Koyejo 2020)

`K,τ
Smoothed Hinge(s, y) τ ln

[ ∑
A⊂[L],|A|=K

e

1{y/∈A}
τ +

∑
j∈A

sj
Kτ ]
− τ ln

[ ∑
A⊂[L],|A|=K

e

∑
j∈A

sj
Kτ ] K, τ (Berrada, Zisserman, and Kumar 2018)

`K,ε,B
Noised bal.(s, y) (1 + t̂opK+1,ε,B(s)− sy)+, K, ε, B proposed

`
K,ε,B,my
Noised Imbal.(s, y) (my + t̂opK+1,ε,B(s)− sy)+, K, ε, B, my proposed



58Computation time
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`K,ε,BNoised bal., B = 3

`K,ε,BNoised bal., B = 10

`K,ε,BNoised bal., B = 50

`K,τSmoothed Hinge

`KCE

I CIFAR-100 dataset, DenseNet 40-40 model
I `K,ε,B

Noised bal. insensitive to K unlike `K,τ
Smoothed Hinge



59Noised top-K loss
Properties

Proposition

For a smoothing parameter ε > 0 and a label y ∈ [L]:
• `K,ε

Noised bal.(·, y) is continuous and differentiable almost everywhere

• The gradient of `(·, y) , `K,ε
Noised bal.(·, y) is given by:

∇`(s, y)=1{1+topK+1,ε(s)≥sy} ·(∇topK+1,ε(s)− δy),

where δy ∈ RL is the vector with 1 at coordinate y and 0 elsewhere.



60Additional notation

∆L , {π ∈ RL :
∑

k∈[L] πk = 1, πk ≥ 0} : probability simplex of size L

Risks
I Conditional risk: for x ∈ X ,π ∈ ∆L, R`|x(s,π) = Ey|x∼π(`(s, y))

I Integrated risk for a scoring function f : R`(f ) , E(x,y)∼P[`(f (x), y)]

Bayes risks :
R∗`|x(π) , inf

s∈RL
R`|x(s,π)

R∗` , inf
f :X→RL

R`(f )



61Top-K preserving vectors
Definition

Definition(11)

For a fixed K ∈ [L], and given s ∈ RL and s̃ ∈ RL, we say that s is top-K
preserving w.r.t. s̃, denoted PK(s, s̃), if for all k ∈ [L],

s̃k > topK+1(s̃) =⇒ sk > topK+1(s)

s̃k < topK(s̃) =⇒ sk < topK(s)
The negation of this statement is¬Pk(s, s̃).

Roughly speaking: the top-K coordinates of the two vectors are the same

(11) F. Yang and S. Koyejo (2020). “On the consistency of top-k surrogate losses”. In: ICML. vol. 119, pp. 10727–10735, Definition 2.3.



62Top-K preserving vectors
Example

Example:

I Consider the vectors s =

[ 4.0
−1.5

2.5
1.0

]
and s̃1 =

[
5.0
1.0
6.0
3.0

]
.

s is top-2 preserving with respect to s̃1 because it preserves its top-2
components (the first and third components).

I Consider the vectors s =

[ 4.0
−1.5

2.5
1.0

]
and s̃2 =

[ 5.0
5.5
−1.0

3.0

]
.

s is not top-2 preserving with respect to s̃2 because it changes its top-2
components.



63Top-K calibrated loss

Definition(12)

A loss ` : RL × Y → R is top-K calibrated if for all π ∈ ∆L and x ∈ X :
inf

s∈RL:¬Pk(s,π)
R`|x(s,π)> R∗`|x(π)

Interpretation:
` is top-K calibrated if the Bayes risk can only be attained among top-K
preserving vectors w.r.t. the conditional probability distribution

(12) F. Yang and S. Koyejo (2020). “On the consistency of top-k surrogate losses”. In: ICML. vol. 119, pp. 10727–10735, Definition 2.4.
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