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PLANT CLASSIFICATION WITH PL@NTN ET

https://plantnet.org/

L Identification

» ML assisted citizen science

» >40,000 species

» >10,000,000 annotated images

» >1Tb of data = Reduction to share with community


https://plantnet.org/
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LONG TAILED DISTRIBUTION

PRESERVED WITH SAMPLING OF GENERA

100% Pl@ntNet-300K dataset

- Full Pl@ntNet dataset

80%

60%

40%

Cumulative share of images

20%

11%

0% 20% 40% 60% 80% 100%

Cumulative share of species
from the smallest to the largest number of images

80% of species account for only 11% of images



INTRA-CLASS VARIABILITY
SAME LABEL/SPECIES BUT VERY DIVERSE IMAGES

Guizotia Diascia Lapageria Casuarina Freesia
abyssinica rigescens rosea cunninghamiana alba

Plant species are challenging to model based on pictures only!



INTER-CLASS AMBIGUITY

DIFFERENT LABELS/SPECIES BUT SIMILAR IMAGES

Cirsium Chaerophyllum Conostomium Adenostyles Sedum
rivulare aromaticum kenyense leucophylla montanum

Cirsium Chaerophyllum Conostomium Adenostyles Sedum
tuberosum temulum quadrangulare alliariae rupestre

Some species are visually similar (especially within genus)
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CONSTRUCTION OF PL@NTNET-300K
SUBSAMPLING OF GENERA

{ Randomly
sub-sample ;
10% of genera :

¥

Pereskia Pereskia Pereskia
bleo grandifolia culeata

Sample at genus level to preserve intra-genus ambiguity



LINKS Q

Zenodo, 1 click download

https://zenodo.org/record/5645731

Code to train models:

https://github.com/plantnet/PlantNet-300K


https://zenodo.org/record/5645731
https://github.com/plantnet/PlantNet-300K
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LIMITATION OF A SINGLE PROPOSITION

World flora

Apiaceae* With high class ambiguity, returning a
single class is hazardous

Chaerophyllum bulbosum L
Apiaceae

Apiaceae



MOTIVATION OF ToP-K

FROM A SINGLE TO MANY PREDICTED LABELS

Possible solution: return the K "most likely" species for all images

» Prosforasmall K:
ease user experience, handle screen size constraints (mobiles)

Pl@ntNet returns species names + most similarimages to the query:
narrows down the ambiguity

» Pros foralarge K:
ensure the true class lies in the K returned classes

Choice of K :

» task-dependant, often K = 3,5, ... oreven larger for challenging tasks
» considered fixed by the user for the talk (not tuned)
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NOTATION: MULTI-CLASS SETTING

» L:numberofclasses, [L]:={1,...,L},labelspace

Pl@ntNet-300K: L = 1081 species

» X :Featurespace
Pl@ntNet-300K: X = [RZ56x256%3

> (Xi,Yi) e X x[L],i=1,...,niid according to P (unknown)
Pl@ntNet-300K: 306 146 images

» K e [L]is afixed parameter used for top-K

» Set-valued classifier
M & — 2M; 2[4 setof all subsets of [L]

Mathematical goal:
minimize the risk P(Y ¢ (X)) with cardinality constraints on ['(X)




BAYES / ORACLE SOLUTIONS™

RETURN SETS OF CLASSES

Notation:
» po(x) £ P(Y= /X = x): conditional label probability given an input x

» Decreasingordering: pey(x) > -+ > p)(x),
i.e, (1) is the most likely class for x, (2) the second most likely class, etc.

Below we also use: p(1y(X) = i, (X), - - -, P1)(X) = Pi,(x) (X)

» Top-K classification:

MMop-k € arg min P(Y ¢ (X)) — r:‘op_,((x) = {i(x),...,ik(x)}
r

st F(x)] <K, ¥xe X

Interpretation:
the optimal top-K classifier returns the K most likely classes

(1)M.Lapin,M.He'\n,and B. Schiele (2015). “Top-k multiclass SVM”. In: NeurIPS, pp. 325-333.



DEEP LEARNING

NOTATION MOSTLY




DEEP LEARNING
NOTATION MOSTLY

Scores  Softmax  Probabilities
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DEEP LEARNING
NOTATION MOSTLY

[ ) Scores  Softmax  Probabilities
. X\ ) . el
[ k 7 O /e Tt O ®
SRS @ L
. 8 X . .
SR L J @
. - ¢ ‘ a .
: (] @
| =2 = J o
e ® @ .- @
® Last layer
» From animage, geta score vectors = (s;,...,s;)' € R (akalogits)

» s, :score forclass k
» Reordered scores: sy > s2) > -+ > 5y
> (Top-1) prediction: output the "most likely" class, associated to s(;) or p(y)



DEEP LEARNING
STANDARD CASE

» Training: cross-entropy (CE) loss + Stochastic Gradient Descent (SGD)

ey
> lcE(s,y) = —log (m)

s=(0,0,2)T 1.000
0.857
0.714
0.571
0.429
0.286
0.143

5s=(2,0,00T  s=(0,2,0)T ~0.000

Example: L =3, K =2,y =3
(Normalized) level set of s — lcg(s,y):




DEEP LEARNING
STANDARD CASE

» Training: cross-entropy (CE) loss + Stochastic Gradient Descent (SGD)

ey
> tenten) = s (55 5)

S

(0,0,2)T 1.000
0.857
0.714
0.571
0.429
0.286
0.143

5s=(2,0,00T  s=(0,2,0)T ~0.000

Example: L =3, K =2,y =3
(Normalized) level set of s — lcg(s,y):

» Notdesigned to optimize top-K accuracy
» Can we do better than cross entropy ?



NOTATION AND PROPERTIES® FOR TOP-K Q

For a score vectors € R

topy : S > S() (K-th largest score)
topXk : s — Z S(k) (sum of K largest scores)
ke[K]

Properties

> Vtop(s) = argtopy(s) € RL:

vector with a single 1 at the K-th largest coordinate of s, 0 o.w.
> VtopXi(s) = argtopZg(s) € Rt:

vector with 1’s at the K-th largest coordinates of s, 0 o.w.

(Z)FVangandS Koyejo (2020). “On the consistency of top-k surrogate losses”. In: ICML. vol. 119, pp.10727-10735.



[LLUSTRATION OF TOP-K NOTATION

4.0
. —-1.5
Example on the following score vector: s = 25
1.0
We have
0
0
top,(s) = 2.5 Vtop,(s) : = arg top,(s) = 1
0



[LLUSTRATION OF TOP-K NOTATION

4.0
. —-1.5
Example on the following score vector: s = 25
1.0
We have
0
0
top,(s) = 2.5 Vtop,(s) : = arg top,(s) = 1
0

1
topX,(s) =4.0+2.5=6.5 VtopX,(s) : = argtopX,(s) = ?
0
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TopP-K ERROR

Objective: minimize top-K error (0/1 loss):
25(5,¥) = Lisop (s)>s,}

Problem: piecewise constant function w.rt. s, hard to optimize!!!

s = (0,0, 2>T 1.000
0.857




REMINDER: BINARY HINGE LOSS &

» Binarycase(L=2):y =1,y = —1
» Scores: predicty = 1ifs > 0,y = —1otherwise

Objective: Minimize binary 0/1 error £°/7(s,y) = 1[sy < 0].
Upper bound of ¢°/1: fHinge(s, y) = amax(0,1— Lsy) = a(1 — Lsy),

alpha 0.5
—— alpha 1.0
— alpha 2.0
—— 0/1 error

Larger margins (1) require more confident predictions to achieve a zero loss



TopP-K HINGE Loss®

Motivation: surrogate top-K loss, similar to hinge loss in binary classification
Uiinge(8,¥) = (14 topy(s\y) — 5,

wheress, , is the vector s with coordinate y removed

Remark: 1acts as a margin above

Limitations:

» Experimental: poor performance

» Theoretical: Kﬁinge is not top-K calibrated (more later)

s=(0,0,2) 1.000

0.857

0.714

0.571

0.429

0.286

0.143

s=1(2,0,07 s=(0,2,0)T ~0-000

(3)M.Lapin,M.He'm,and B. Schiele (2015). “Top-k multiclass SVM”. In: NeurIPS, pp. 325-333
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TopP-K CALIBRATION Q

Question:

When minimizing a surrogate loss £ implies minimizing the top-K error £ ?
Answer: Yes, if £ is top-K calibrated

i.e., if the Bayes risk can only be attained by a score sharing the same top-K as
the underlying conditional probability distribution)

Integrated /(-Risk for classifier f Ro(f) ZE (e y)~p[l(f(X), )]

Integrated Bayes Risk R; = inf R(f)

f:X—R:



ToP-K CONSISTENCY

Theorem®

Listop-K calibrated = /s top-K consistent:

i.e., for any sequence of measurable functions f) : X — R!, we have:
Re (F0) = R = R () = Rix

where (€ is the (0/1) top-K loss

Interpretation:
Minimizing a top-K calibrated loss implies minimizing the top-K error

Note: /¢ is top-K calibrated, but not when restricted to linear classifiers
(ford <3,L <3,K < 2).

mF.VangandS Koyejo (2020). “On the consistency of top-k surrogate losses”. In: ICML. vol. 119, pp. 1072710735, Theorem 2.2.



ToP-K CALIBRATED HINGE LOSS®)

Atop-K hinge-loss that is top-K calibrated:

E?fal. Hingc(svy) - (1 + tOpKJr'I (S) - 5y)+

5=1(0,0,2)" 1.00

s=1(2,0,0)7 s=(0,2,0)T ~0.000

Better theoretical properties, but still fails with deep learning (more later)

Problem: s — topy(s) non-smooth and sparse gradient

(S)F.Yangands Koyejo (2020). “On the consistency of top-k surrogate losses”. In: ICML. vol. 119, pp. 10727-10735.
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SMOOTH ToP-K sum®

DEFINITION

Motivation: topX_x is a non-smooth, function, smooth it!
» smoothing parametere > 0
» scores € Rt

The e-smoothed version of topZg:

topZi (s) = Ez[topZ(s + €Z)]

Z: standard normal random vector, Z ~ N/(0, Id;)

(6)Q. Berthetetal. (2020). “Learning with differentiable perturbed optimizers”. In: Neur!PS.



SMOOTH TOP-K SUM
PrROPOSITION

For a smoothing parameter e > 0,

» The function topXy . : Rt — Ris strictly convex, twice differentiable
and W-Lipschitz continuous.

» The gradient of topX . reads:
VstopX ((s) = E[arg topXk(s + €Z)]

P> VstopXi,is m—Lipschitz.

€

> Whene — 0, topZi (s) — topX(s).

» From non-smooth to smooth function with simple stochastic
perturbation

» Whene — 0, recover the original function



SMOOTH TOP-K
DEFINITION

Reminder:  topy(s) = topXk(s) — topXk_1(s)

Foranys € Rtand K € [L], the smoothed top-K at level € is:

topy () £ topXk e(s) — topXk_1.c(s)




SMOOTH TOP-K
PrROPOSITION

For a smoothing parametere > O,
4V/KL

> topy . is -smooth.

€

» Foranys € R, [topy .(s) — top(s)| < € Ck, where

CK_’[_ = K\/ 2 |0g L.

» Smooth approximation of topy.
» Smoothness constant depending on ¢ and problem constants.
» Whene — 0, recover initial top-K
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NOISED TOP-K LOSS

DEFINITION

m: ﬁénl. Hinge(say) - (1 + tOpK+1(S) - S_V)+

We define él,fl’oeised bai the noised balanced top-K hinge loss as:

K,e
gNoised bal.(s’y) = (1 + topK+1,€(s) - 5y)+

Problem: Untractable: how to deal with the expectation in topy . (s) ?



PRACTICAL IMPLEMENTATION: FORWARD PASS Q

Solution: Draw B noise vectors Zi, . . . , Zg, with Z, "= N(0,1d,) forb € [B].

topK’F(s) = topXi (s) — topXx_1.c(s)
= Ez[tOpZK(S + EZ)] = Ez[tOpZK,q(S + EZ)]

Monte Carlo estimation :
B B

—~ 1 1
topy . 5(s) = 7 ZtopZK(s +eZ,) — B Ztopqu(s + €Z,)
b=1 b=1

Easy implementation with deep learning libraries e.g., Pytorch, Tensorflow



PRACTICAL IMPLEMENTATION: BACKWARD PASS Q

Solution: Draw B noise vectors Zi, . . . , Zg, with Z, "= N(0,1d,) forb € [B].

Vstopy (s) = VstopXi,e(s) — VstopZg_1.c(s)
= Elarg topX(s + €Z)] — E[arg topXk_1(s + €Z)]

Monte Carlo estimation~
B B

VtopKfB ng)topZK( s+ €Z,) — delgjtopZK 1(s + €Z,)
b 1 b=1

Easy implementation with deep learning libraries e.g., Pytorch, Tensorflow



[LLUSTRATION EXAMPLE Q

L=4,K=2,B=3,e=1.0,s = |:

[SISINIY)

4
13} . We have topy(s) = 2.4 and
5

1
arg topg(s) = | § |. Assume the three noise vectors sampled are:
0

S+€Z-|— |:ZZ
%

O=00

[ E—

N———
Il ]
Owmwimwi—



NOISED TOP-K LOSS

VISUALIZATION

s=(2,0,0)7

(

@) £

s=1(0,2,0)7

K,0.3,30
“Noised bal."

1.000
0.857
0.714
0.571
0.429
0.286
0.143
0.000

s=(2,0,0)7

(b)

s5=1(0,2,0)7

éK.'l.SO
“Noised bal

1.000
0.857
0.714
0.571
0.429
0.286
0.143
0.000
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IMBALANCED TOP-K LOSS

Modification: use larger margins for classes with few examples®:

K,e,B, —~
éNi;sed%baL(saY) = (my + tOpK+1,e,B(5) —Sy)+

Q)
Setm, = C/nl/“, with n, the number of samples in the training set with class
y,and C a hyperparameter to be tuned on a validation set.

Intuition: add more emphasis on rarely seen examples

s =1(0,0,2) 1.000

0.857

0.714

0.571

0.429

0.286

0.143

s=(2,0,0)7 s=(0,2,0)T ~0-000

[K.OJ ,30,1
“Noised Imbal.*

Dk caoetal. (2019). “Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss”. In: NeurIPS. vol. 32, pp. 1565-1576.



IMBALANCED TOP-K LOSS

Modification: use larger margins for classes with few examples®:

K,e,B, —~
éNi;sed%baL(saY) = (my + tOpK+1,e,B(5) —Sy)+

Q)
Setm, = C/nl/“, with n, the number of samples in the training set with class
y,and C a hyperparameter to be tuned on a validation set.

Intuition: add more emphasis on rarely seen examples

s=1(0,0,2) 1.000

0.857

0.714

0.571

0.429

0.286

0.143

s=(2,0,0)7 s=(0,2,0)T ~0.000

[K.OJ ,30,5
“Noised Imbal.*

Dk caoetal. (2019). “Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss”. In: NeurIPS. vol. 32, pp. 1565-1576.
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CIFAR100 DATASET

» 100 classes, 500 training images per class and 100 test images per class

Superclass

aquatic mammals

fish

flowers

food containers

fruit and vegetables
household electrical devices
household furniture

insects

large carnivores

large man-made outdoor things
large natural outdoor scenes
large omnivores and herbivores
medium-sized mammals
non-insect invertebrates
people

reptiles

small mammals

trees

vehicles 1

vehicles 2

Classes

beaver, dolphin, otter, seal, whale

aquarium fish, flatfish, ray, shark, trout
orchids, poppies, roses, sunflowers, tulips
bottles, bowls, cans, cups, plates

apples, mushrooms, oranges, pears, sweet peppers
clock, computer keyboard, lamp, telephone, television
bed, chair, couch, table, wardrobe

bee, beetle, butterfly, caterpillar, cockroach
bear, leopard, lion, tiger, wolf

bridge, castle, house, road, skyscraper

cloud, forest, mountain, plain, sea

camel, cattle, chimpanzee, elephant, kangaroo
fox, porcupine, possum, raccoon, skunk

crab, lobster, snalil, spider, worm

baby, boy, girl, man, woman

crocodile, dinosaur, lizard, snake, turtle
hamster, mouse, rabbit, shrew, squirrel

maple, oak, palm, pine, willow

bicycle, bus, motorcycle, pickup truck, train
lawn-mower, rocket, streetcar, tank, tractor

https://www.cs.toronto.edu/~kriz/cifar.html


https://www.cs.toronto.edu/~kriz/cifar.html
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INFLUENCE OF € ON TOP-K ACCURACY Q

€ 0.0 le-4 l1e-3 1le-2 Te-1 1.0 10.0 100.0

Top-5acc. 1938 14.84 114 9336 94.46 94.24 9378 93.12

. 2 K=5,€,B=10
CIFAR-100 best validation top-5 accuracy, DenseNet 40-40, £\~ ™.

_ K ,
> ¢ = 0recovers (¢, g bad performance
» clarge enough, relevant coordinates are updated, learning occurs
» Optimization robust to large values of



INFLUENCE OF B

B 1 2 3 5 10 50 100

Top-5acc 94.28 94.2 94.46 9452 94.24 94.64 94.52

5,0.2,B
P (icised bal» CIFAR-100 dataset, DenseNet 40-40 model.
» Bhas little influence
» Using SGD increases the randomness (B noise vectors per batch)
» Inpracticeset Btoasmallvalueeg.,B =3
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MACRO-AVERAGE DEFINITION Q

» TestsetofexamplesS, = {(x1,)1),---, (Xn,Jn)}

» ¢ : X — 2K learned top-K classifier (model) to evaluate
» C;setof examplesofclassj: C; = {¢ € [L],y, =j}

Top-K accuracy: + > 1[y; € Tk(xi)]
Reflects the performance on classes with lots of examples

L
Macro-average Top-K accuracy: 13-, Iéﬁ Deec, Lye € T(xe)]
Reflects the performance on all classes regardless of number of examples




CROSS-ENTROPY BASELINE

ACCURACY VS MACRO-AVERAGE ACCURACY

1.0
Top-1 accuracy
0.8 Macro-average top-1 accuracy
0.6
0.4+
0.2
0.0
+<\°" é\é &“9“ e°>° @6" &
N2 & @ S &
? & < & &
N & < B
o o &
& $

Pl@ntNet-300K test performance for several neural networks: large gaps
due to long-tailed distribution



CROSS-ENTROPY BASELINE
INFLUENCE OF NUMBER OF EXAMPLES ON ACCURACY

Number ofimages Mean bin accuracy

0—-10 0.09
10 — 50 0.35
50 — 500 0.59
500 — 2000 0.79
> 2000 0.93

Test accuracy (ResNet50) w.r.t. number of images per class at training...

... (many) classes with few examples have low accuracy (hard to learn)



COMPARISON OF SEVERAL LOSSES

KT 8 K,e,B 9 10 K,e,B,m.
K ECE £Smoothed Hinge( ) gNoised bal. fOC3.|( ) LDAM( ) gNoised ii’nbal.
1 35.91 NA 35.44 37.87 40.54 42.36
3 58.91 50.41 59.06 59.96 63.50 64.77
5 69.05 50.71 66.97 69.91 72.23 72.95
10 78.08 46.23 76.08 78.88 80.69 80.85

Macro-average test top-K accuracy on PI@ntNet-300K, ResNet-50.

K, . . 3
> Lsrnoothed Hinge 81VeES unsatisfactory forimbalanced datasets

» Imbalanced losses: far better than balanced losses

» Class-wise margin is effective compared to constant margin:

Eﬁg‘iﬂﬁnba]_ outperforms other losses on Pl@ntNet-300K

@) Berrada, A. Zisserman, and M. P Kumar (2018). “Smooth Loss Functions for Deep Top-k Classification”. In: ICLR.
O)1-v. Linetal (2017). “Focal Loss for Dense Object Detection”. In: ICCV, pp. 2999-3007.
(190K caoetal. (2019). “Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss”. In: NeurIPS. vol. 32, pp. 1565-1576.



CONCLUSION AND PERSPECTIVES @

Conclusion
» Anew loss for top-K classification: smooth a top-K calibrated one
» Suitable for training deep learning models

» Significant performance gains on real databases such as Pl@ntNet
(with high ambiguity & a long tail distribution)

Perpectives
» A fixed setsize Kis notideal in practice

» Some species are easy to recognize while others are ambiguous
» Some images are very informative while others are not

» Set-valued classification with a varying set size could be more effective



CONTACT INFORMATION @

Contact:

P><] joseph.salmoneumontpellier.fr

@ http://josephsalmon.eu

Github: @josephsalmon O Twitter: @salmonjsph y
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CIFAR100: LABEL NOISE INJECTION @

» Reminder: 20 superclasses each containing 5 classes

» Ex: Super class large carnivors contains the classes "bear", "leopard”,
"lion", "tiger", "wolf"

For each image in the training set:

» With probability p, randomly sample label within the superclass
» With probability 1 — p, keep the label unchanged

Possibly wrong class, but same superclass as original dataset.



CIFAR100 RESULTS

5,1.0 5,0.2,10

Label noisep éCE “Smoothed Hinge “Noised bal.

0.0 94.24 94.34 94.35
0.1 90.39 92.08 92.03
0.2 87.67 90.22 90.68
0.3 85.93 88.82 89.58
0.4 83.74 87.40 87.48

» CIFAR-100 test Top-5 accuracy, DenseNet 40-40.

» Whenp > 0, {cE tries to fit corrupted labels while top-K losses merely

strives to get the super-class right.
K,

A gives good performance and faster to trainthan /¢, ., Hinge

Noised bal.



SUMMARY OF THE DIFFERENT LOSSES

Loss: £(s,y) Expression Param. Reference
2(s,y) L{top(s)>s} K

Lor(s,y) —In <9i’ / Zve eiw) -

2 ge(5:9) (1+ topy(s\y) — 5y) A K (Lapin, Hein, and Schiele 2015)
LEvXHinge (8:Y) (‘K 1 topy (1L — 8y +5) — 5‘,) ‘ K (Lapin, Hein, and Schiele 2015)
L& Hinge (5:Y) (14 topy(s) — )+ K (Yang and Koyejo 2020)

Ygar o5
‘;}‘;m,ewmgg(s«}’) Tln [ z e | e Kv} —7lIn K, 7 (Berrada, Zisserman, and Kumar 2018)
ACILLA|=K

Ctal (5:9) (1+ TPy, c,0(8) — )+ K e,B proposed
K,e.B.my .

ngem’:ﬁm (s:y) (my + topgys ¢ 5(s) —5)+. K, e, B,my proposed




COMPUTATION TIME

K .e.B

200 éII\If)is;l balo B =3
K e, _
== Liked s B=10
KB .
— -+ Ngited bty B =150

KT
Smoothed Hinge

/K
— g

100 A

Av. epoch duration (s.)

» CIFAR-100 dataset, DenseNet 40-40 model

K,e,B . BAg . K,
P (N oied bal. INSENSsitive to K unlike ESmoothedHinge



NOISED TOP-K LOSS
PROPERTIES

For a smoothing parametere > O andalabely € [L]:

.KK,E

Noised bat (++) is continuous and differentiable almost everywhere

. The gradient of /(-, y) = K',f"oﬁsed bal (> Y) is given by:

Vi(s,y)= ]1{1+top,<+175(s)25y} : (VtopKH’E(S) —dy),

where §, € R" is the vector with 1at coordinate y and 0 elsewhere.




ADDITIONAL NOTATION @

A2 {meR: Zke[L] 7, = 1,7, > 0} : probability simplex of size L

Risks
» Conditional risk: forx € X, € A, Rox(s, ™) = Eyjxur (€(s,))
» Integrated risk forascoring function f: Re(f) £ Eeyyrll(f(x), )]

Bayes risks :
Ri(m) £ inf Ry(s,m)
ERL

S

Ry

inf R
f:?l(rL]RL é(f)



TopP-K PRESERVING VECTORS

DEFINITION

Definition™

Forafixed K € [L], and givens € R"and§ € R’, we say that s is top-K
preserving w.rt. §, denoted P (s, §), if forall k € [L],
Sk > top4(8) = s > topg4(s)
Sk < topk(s) = s < topg(s)
The negation of this statement is —Py(s, §).

Roughly speaking: the top-K coordinates of the two vectors are the same

m)F‘(angamds Koyejo (2020). “On the consistency of top-k surrogate losses”. In: ICML. vol. 119, pp. 10727-10735, Definition 2.3.



TopP-K PRESERVING VECTORS

EXAMPLE

Example:

4.0 5.0
» Consider the vectors s = {;g} and§; = {;8}
1.0 3.0

s is top-2 preserving with respect to §; because it preserves its top-2
components (the first and third components).

4.0 5.0
» Consider the vectorss = {_ g} ands; = {_15.'3}
0 3.0

s is not top-2 preserving with respect to s, because it changes its top-2
components.



ToP-K CALIBRATED LOSS

Definition 2

Aloss/: R x Y — Ris top-K calibrated if forall m# € A, and x € X:

se]RL:i—rE(S,‘rr) RZIX(S, 77) ~ Rle(ﬂ-)

Interpretation:

Lis top-K calibrated if the Bayes risk can only be attained among top-K
preserving vectors w.r.t. the conditional probability distribution

UZ)F.YangandS Koyejo (2020). “On the consistency of top-k surrogate losses”. In: ICML. vol. 119, pp. 1072710735, Definition 2.4
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