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2Motivated by Pl@ntnet
Flower power in Montpellier
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3Plant classification with Pl@ntnet
https://plantnet.org/

▶ ML assisted citizen science
▶ > 40,000 species
▶ > 10,000,000 annotated images
▶ > 1Tb of data =⇒ Reduction to share with community

https://plantnet.org/
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6Long tailed distribution
Preserved with sampling of genera
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7Intra-class variability
same label/species but very diverse images

Guizotia
abyssinica

Diascia
rigescens

Lapageria
rosea

Casuarina
cunninghamiana

Freesia
alba

Plant species are challenging to model based on pictures only!



8Inter-class ambiguity
different labels/species but similar images

Cirsium
rivulare

Chaerophyllum
aromaticum

Conostomium
kenyense

Adenostyles
leucophylla

Sedum
montanum

Cirsium
tuberosum

Chaerophyllum
temulum

Conostomium
quadrangulare

Adenostyles
alliariae

Sedum
rupestre

Some species are visually similar (especially within genus)
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10Construction of Pl@ntNet-300K
Subsampling of genera

Randomly
sub-sample
10% of genera

Sample at genus level to preserve intra-genus ambiguity



11Info / Links for Pl@ntNet-300K

▶ 306, 146 color images images
▶ Labels: 1, 081 species
▶ 2, 079, 003 workers (volunteers), with≈ 2 labels per worker (on

average)

Zenodo, 1 click download

https://zenodo.org/record/5645731

Code to train models:

https://github.com/plantnet/PlantNet-300K

https://zenodo.org/record/5645731
https://github.com/plantnet/PlantNet-300K


12Problem: Can we trust our data?

. . . but labelling errors are common

CIFAR10(1)

y⋆ = cat

Quickdraw(2)

y⋆ = T-shirt

MNIST(3)

y⋆ = 6

(1) A. Krizhevsky and G. Hinton (2009). Learning multiple layers of features from tiny images. Tech. rep. University of Toronto.
(2) (N.d.). https://github.com/googlecreativelab/quickdraw-dataset.
(3) Y. LeCun et al. (1998). “Gradient-based learning applied to document recognition”. In: Proceedings of the IEEE 86.11, pp. 2278–2324.

https://github.com/googlecreativelab/quickdraw-dataset
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13Taking a step back
Data collection and data quality

▶ Classical dataset: (x1, y1), . . . , (xntask , yntask)
Features/tasks× labels pairs: (xi, yi) ∈ X × [K] = {1, . . . , K}

▶ Popular datasets used for supervised learning (classification):
CIFAR10, CIFAR100, ImageNet, MNIST, Quickdraw, LabelMe, etc.

Questions:
▶ Where do the tasks come from? Web scrapping
▶ Where do the labels come from? Crowdsourcing
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14CIFAR10, an archetypal example
Step 1: data collection (80 Million Tiny Images )

WordNet 

Altavista, Ask, Flickr, Cydral,
Google, Picsearch, Webshots

all non-abstract nouns: 75,062

truck

artefact

motor vehicule

go-kart truckmotorcar

gaz guzzlercompacthatch-back
go-cart

Lexical database

Search engines

...

Querry for 8 months

80 Million Tiny Images

32 x 32 images

Note: some issues on this process(4)

(4) V. Uday Prabhu and A. Birhane (June 2020). “Large image datasets: A pyrrhic win for computer vision?” In: arXiv e-prints, arXiv:2006.16923,
arXiv:2006.16923.



15CIFAR10, an archetypal example
Step 2: label collection and crowdsourcing

Quotes(5) :
▶ "We paid students to label a subset of the tiny images dataset[...]. The

labelers were paid a fixed sum per hour spent labeling."
▶ "Since each image in the dataset already comes with a noisy label (the

search term used to find the image), all we needed the labelers to do
was to filter out the mislabeled images."

▶ "Furthermore, we personally verified every label submitted by the
labelers" : errare humanum est

(5) A. Krizhevsky and G. Hinton (2009). Learning multiple layers of features from tiny images. Tech. rep. University of Toronto.
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16CIFAR10H(6)

Peterson et al. (2019) "Our final CIFAR10H behavioral dataset consists of
511,400 human categorization decisions over the ntaks=10,000-image testing
subset of CIFAR10 (approx. 50 judgments per image)."

▶ Total number of workera: nworker = 2,571 (via Amazon Mechanical Turk)
▶ Processing: every 20 trials, an obvious image is presented as an

attention check, and participants who scored below 75% on these were
removed from the final analysis (14 total).

Note: workers were paid $1.50 total.

(6) J. C. Peterson et al. (2019). “Human Uncertainty Makes Classification More Robust”. In: ICCV, pp. 9617–9626.



17CIFAR10HPeterson et al., 2019
More human in the loop
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More human in the loop
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More human in the loop

Image  #9246
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More human in the loop

Image  #3724
CIFAR10 label: frog
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17CIFAR10HPeterson et al., 2019
More human in the loop

Image  #1353
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17CIFAR10HPeterson et al., 2019
More human in the loop

Image  #7455
CIFAR10 label: automobile
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17CIFAR10HPeterson et al., 2019
More human in the loop

Image  #8872
CIFAR10 label: ship
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18Label selection/aggregation

Simple strategies:

▶ Majority voting (MV):
naive but ineffective for borderline cases

▶ First label reaching a consensus of p workers (often p = 5)(7)

→ arbitrary choice of p
▶ Leverage label distribution, say with entropy:

not always reliable (e.g., with few labels), biases, psychology
mechanisms spammers

Intermission : see app for entropy visualization

(7) R. Snow et al. (2008). “Cheap and Fast - But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks”. In: Conference on Empirical
Methods in Natural Language Processing. EMNLP 2008. Association for Computational Linguistics, pp. 254–263.



19A first solution: classify the quality
ImageNet oddities

• curated set of probes(8) in the training data (OOD=Out Of Distribution)
e.g.,: ImageNet(9) +14 millions tasks, K = 1000 classes

(taski, labeli, metadatai) ∈ X × Y ×M

• 1 metadata = 1 dynamic
• Identify the ambiguity

(8) S. A. Siddiqui et al. (2022). Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics.
(9) O. Russakovsky et al. (2015). “ImageNet Large Scale Visual Recognition Challenge”. In: Int. J. Comput. Vision 115.3, pp. 211–252.
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20Strategies (less?) costly
Classical supervised learning

Q:When was the last time you had a curated set of metadata up your sleeve?

A:Never!

Assuming we have a hard label(∈ [K]):
• Confident learning(10): estimate joint distribution between noisy

(given) and true labels (unknown)
• Self learning(11): train a model + extract features and similarity metric

on a subset + retrain with modified weighted loss
• Representative Sampling (CleanNet(12)): trapping set + encoders +

task similarity with constraints on loss
• Our focus here: study the learning dynamic,

▶ AUM(13) (Area Under the Margin): study margin during training

(10) C. Northcutt, L. Jiang, and I. Chuang (2021). “Confident learning: Estimating uncertainty in dataset labels”. In: J. Artif. Intell. Res. 70, pp. 1373–1411.
(11) J. Han, P. Luo, and X. Wang (2019). “Deep self-learning from noisy labels”. In: ICCV, pp. 5138–5147.
(12) K.-H. Lee et al. (2018). “Cleannet: Transfer learning for scalable image classifier training with label noise”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 5447–5456.
(13) G. Pleiss et al. (2020). “Identifying mislabeled data using the area under the margin ranking”. In: NeurIPS.



20Strategies (less?) costly
Classical supervised learning

Q:When was the last time you had a curated set of metadata up your sleeve?
A:Never!

Assuming we have a hard label(∈ [K]):
• Confident learning(10): estimate joint distribution between noisy

(given) and true labels (unknown)
• Self learning(11): train a model + extract features and similarity metric

on a subset + retrain with modified weighted loss
• Representative Sampling (CleanNet(12)): trapping set + encoders +

task similarity with constraints on loss
• Our focus here: study the learning dynamic,

▶ AUM(13) (Area Under the Margin): study margin during training

(10) C. Northcutt, L. Jiang, and I. Chuang (2021). “Confident learning: Estimating uncertainty in dataset labels”. In: J. Artif. Intell. Res. 70, pp. 1373–1411.
(11) J. Han, P. Luo, and X. Wang (2019). “Deep self-learning from noisy labels”. In: ICCV, pp. 5138–5147.
(12) K.-H. Lee et al. (2018). “Cleannet: Transfer learning for scalable image classifier training with label noise”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 5447–5456.
(13) G. Pleiss et al. (2020). “Identifying mislabeled data using the area under the margin ranking”. In: NeurIPS.



21Deep learning
Notation mostly
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▶ From an image, get a score vector s = (s1, . . . , sL)
⊤ ∈ RL (aka logits)

▶ sk : score for class k
▶ Train for T epochs (say with SGD)
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22Area under the margins(14)

A step back with one label per task
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Motivation: the logit scores (average) value along learning epochs give
insights on the task difficulty

(14) G. Pleiss et al. (2020). “Identifying mislabeled data using the area under the margin ranking”. In: NeurIPS.
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23Dissecting the AUM
Building to the crowdsourced extension

Settings:
▶ (x1, y1), . . . , (xn, yn) ∈ X × [K] (images, labels) pairs
▶ Classifier: at epoch t ∈ [T], C(t)(xi) ∈ RK a vector of scores (logits)

AUM(xi, yi) =
1
T

T∑
t=1

Margin between scores:
content of Hinge loss︷ ︸︸ ︷[

C(t)(xi)yi − max
ℓ̸=yi
C(t)(xi)ℓ

]
Score of assigned label Other maximum score

Average = Stability

Challanging for crowdsourcing:
• No single yi, multiple y(j)

i : one for each worker wj answering task xi

▶ . . . so C(t)(xi)yi does not exist
▶ . . . and same issue with ℓ ̸= yi.
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24Dissecting the AUM
On the way to a crowdsourced extension

Settings:
▶ (xi, y(j)

i )i∈[ntask],j∈[nworker]: (task,labels) crowdsourced pairs

ÃUM(xi) =
1

|A(xi)|
∑

j∈A(xi)

1
T

T∑
t=1

Margin between scores:
content of Hinge loss︷ ︸︸ ︷[

C(t)(xi)y(j)
i
− max

ℓ ̸=y(j)
i

C(t)(xi)ℓ

]
Score of assigned label by worker wj Other maximum score

Averaging workers AUM

• Multiple answers =⇒ average each AUM (independently)
• LetA(xi) := {j ∈ [nworker] : worker j answered task i}.

Reliability issue:
• Expert = random workers =⇒ weight AUM per worker
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25Dissecting the AUM
Toward a crowdsourced extension

• Introduce weights s(j)(xi) as the trust score in worker j for task xi

˜̃
AUM(xi) =

1
S

∑
j∈A(xi)

s(j)(xi)
1
T

T∑
t=1

Margin between scores:
content of Hinge loss︷ ︸︸ ︷[

C(t)(xi)y(j)
i
− max

ℓ ̸=y(j)
i

C(t)(xi)ℓ

]
Score of assigned label by worker wj Other maximum score

Trust score of wj for xi

Weighted average of AUM

with S =
∑

j∈A(xi)

s(j)(xi)



26The WAUM
Toward a crowdsourced extension

Modifying the margin:
• Scale effects in the scores discarded, need normalization(15)

• Better margin (in theory, for top-k classification(16))

Notation:
• softmax(xi) = softmax(C(xi)) ∈ ∆K−1 (simplex of dim K − 1)
• Softmax ordered: softmax[1](xi) ≥ · · · ≥ softmax[K](xi) > 0

WAUM(xi) :=
1
S

∑
j∈A(xi)

s(j)(xi)
1
T

T∑
t=1

Margin between scores:
content of Hinge loss︷ ︸︸ ︷[

softmax(t)
y(j)

i
(xi) − softmax(t)

[2](xi)

]
Probability of assigned label by worker wj Second maximum probability

Trust score of wj for xi Average = StabilityWeighted average of AUM

(15) C. Ju, A. Bibaut, and M. van der Laan (2018). “The relative performance of ensemble methods with deep convolutional neural networks for image
classification”. In: J. Appl. Stat. 45.15, pp. 2800–2818.
(16) M. Lapin, M. Hein, and B. Schiele (2016). “Loss functions for top-k error: Analysis and insights”. In: CVPR, pp. 1468–1477; F. Yang and S. Koyejo (2020).

“On the consistency of top-k surrogate losses”. In: ICML, pp. 10727–10735.



26The WAUM
Toward a crowdsourced extension

Modifying the margin:
• Scale effects in the scores discarded, need normalization(15)

• Better margin (in theory, for top-k classification(16))

Notation:
• softmax(xi) = softmax(C(xi)) ∈ ∆K−1 (simplex of dim K − 1)
• Softmax ordered: softmax[1](xi) ≥ · · · ≥ softmax[K](xi) > 0

WAUM(xi) :=
1
S

∑
j∈A(xi)

s(j)(xi)
1
T

T∑
t=1

Margin between scores:
content of Hinge loss︷ ︸︸ ︷[

softmax(t)
y(j)

i
(xi) − softmax(t)

[2](xi)

]
Probability of assigned label by worker wj Second maximum probability

Trust score of wj for xi Average = StabilityWeighted average of AUM

(15) C. Ju, A. Bibaut, and M. van der Laan (2018). “The relative performance of ensemble methods with deep convolutional neural networks for image
classification”. In: J. Appl. Stat. 45.15, pp. 2800–2818.
(16) M. Lapin, M. Hein, and B. Schiele (2016). “Loss functions for top-k error: Analysis and insights”. In: CVPR, pp. 1468–1477; F. Yang and S. Koyejo (2020).

“On the consistency of top-k surrogate losses”. In: ICML, pp. 10727–10735.



27On the choice of weights
The DS model

Choosing s(j)(xi):
• if s(j)(xi) = 1 all workers have the same weight
• if s(j)(xi) = cj the weights only depend on the worker
• . . .there is already a literature on trusting workers !

DS: Dawid and Skene(17)

Assumption: each worker answers independently
j-th worker confusion matrix: π(j) ∈ RK×K : π

(j)
ℓ,k = P(y(j)

i = ℓ|y⋆i = k)

y(j)
i | y⋆i = ℓ ∼Multinomial

(
π
(j)
ℓ•
)

Note : diagonal elements of π(j) represents worker ability to be correct

(17) A. Dawid and A. Skene (1979). “Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm”. In: J. R. Stat. Soc. Ser. C. Appl. Stat.
28.1, pp. 20–28.
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28DS likelihood

Likelihood:

∏
k∈[K]

π
(j)
ℓ,k

• 1 task, 1 worker and 1 answer conditioned on y⋆i = ℓ

• Multiple workers answer independently
• Remove conditioning assumption on y⋆i : P(y⋆i = ℓ) = ρℓ

• Each task is independent: Tiℓ = 1 if task i has label ℓ and 0 otherwise
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28DS likelihood

Likelihood:

∏
i∈[ntask]

∏
ℓ∈[K]

[
ρℓ

∏
j∈[nworker]

∏
k∈[K]

π
(j)
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29DS vanilla algorithm

Likelihood:
∏

i∈[ntask]

∏
ℓ∈[K]

[
ρℓ

∏
j∈[nworker]

∏
k∈[K]

(
π
(j)
ℓ,k

)] Tiℓ

1 Soft labels initialization:
∀i ∈ [ntask],∀ℓ ∈ [K], T̂iℓ =

1
|A(xi)|

∑
j∈A(xi)

1{y(j)
i =ℓ}

2 while not converged do

// M-step: Get π̂ and ρ̂ assuming T̂s are known

3 ∀(ℓ, k) ∈ [K]2, π̂
(j)
ℓk ←

∑
i∈[ntask ]

T̂iℓ1{y(j)
i =k}∑

k′∈[K]
∑

i′∈[ntask ]
T̂i′ℓ1{y(j)

i′
=k′}

4 ∀ℓ ∈ [K], ρ̂ℓ ← 1
ntask

∑
i∈[ntask] T̂iℓ

// E-step: Estimate T̂s with current π̂ and ρ̂

5 ∀i ∈ [ntask],∀ℓ ∈ [K], T̂iℓ =
∏

j∈A(xi)
∏

k∈[K] ρ̂ℓ·π̂(j)
ℓ,k∑

ℓ′∈[K]
∏

j′∈A(xi)
∏

k′∈[K] ρ̂ℓ′ ·π̂
(j′)
ℓ′k′

6 Labels: ∀i ∈ [ntask], ŷi = T̂i• ∈ RK (soft label)
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6 Labels: ∀i ∈ [ntask], ŷi = T̂i• ∈ RK (soft label)



29DS vanilla algorithm

Likelihood:
∏

i∈[ntask]

∏
ℓ∈[K]

[
ρℓ

∏
j∈[nworker]

∏
k∈[K]

(
π
(j)
ℓ,k

)] Tiℓ
Prevalence of class ℓ

Probability for worker j to answer k with truth ℓ

Indicator of class ℓ for task i

1 Soft labels initialization:
∀i ∈ [ntask],∀ℓ ∈ [K], T̂iℓ =

1
|A(xi)|

∑
j∈A(xi)

1{y(j)
i =ℓ}

2 while not converged do

// M-step: Get π̂ and ρ̂ assuming T̂s are known

3 ∀(ℓ, k) ∈ [K]2, π̂
(j)
ℓk ←

∑
i∈[ntask ]

T̂iℓ1{y(j)
i =k}∑

k′∈[K]
∑

i′∈[ntask ]
T̂i′ℓ1{y(j)

i′
=k′}

4 ∀ℓ ∈ [K], ρ̂ℓ ← 1
ntask

∑
i∈[ntask] T̂iℓ

// E-step: Estimate T̂s with current π̂ and ρ̂

5 ∀i ∈ [ntask],∀ℓ ∈ [K], T̂iℓ =
∏

j∈A(xi)
∏

k∈[K] ρ̂ℓ·π̂(j)
ℓ,k∑

ℓ′∈[K]
∏

j′∈A(xi)
∏

k′∈[K] ρ̂ℓ′ ·π̂
(j′)
ℓ′k′
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30GLAD(18)

Generative model of Labels, Abilities, and Difficulties

• DS assumption: errors only come from workers (no task modelling)

GLAD: incorporating task difficulty

Model labelling errors as a function of worker ability and task difficulty:
▶ worker j has an ability αj ∈ R
▶ task i has a difficulty βi ∈ R⋆

+

P
(

y(j)
i = y⋆i |αj, βi

)
=

1
1 + e−αjβi

Note: assume uniform errors on other labels

(18) J. Whitehill et al. (2009). “Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise”. In: NeurIPS. vol. 22.



30GLAD(18)

Generative model of Labels, Abilities, and Difficulties

• DS assumption: errors only come from workers (no task modelling)

GLAD: incorporating task difficulty

Model labelling errors as a function of worker ability and task difficulty:
▶ worker j has an ability αj ∈ R
▶ task i has a difficulty βi ∈ R⋆

+

P
(

y(j)
i = y⋆i |αj, βi

)
=

1
1 + e−αjβi

Note: assume uniform errors on other labels

(18) J. Whitehill et al. (2009). “Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise”. In: NeurIPS. vol. 22.



31Weights in the WAUM
Leverage both tasks and labels

Proposed scores:
• Keep the product of a worker term and a task term
• Use multidimensionality of DS confusion matrices
• Use a neural network as control agent(19)

s(j)(xi) =

〈
diag(π̂(j)) | softmax(T)(xi)

〉
∈ [0, 1]

Worker j overall ability ℓ Difficulty of task i

(19) M. Servajean et al. (2017). “Crowdsourcing thousands of specialized labels: A Bayesian active training approach”. In: IEEE Transactions on Multimedia
19.6, pp. 1376–1391.
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32Computing the WAUM
The pipeline summarized

• Estimate confusion matrices π(j) ∈ RK×K

• For each worker j
▶ Train a network on

{(
xi, y(j)

i
)
; xi is answered by worker j

}
▶ Compute AUM(xi, y(j)

i ) for the answered tasks xi
▶ Compute trust scores s(j)(xi)
▶ For each task i compute WAUM(xi)

Usage (for learning):

• Prune xi’s with WAUM(xi) below quantile qα
• Estimate confusion matrices π̂(j) on pruned training dataset

• Get soft labels: normalize ŷi =

( ∑
j∈A(xi)

π
(j)
k,k1{y(j)

i =k}

)
k∈[K]

∈ RK

• Train a classifier on the pruned dataset (with soft label as above)
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33Simulation with circles
Binary setting
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• Workers = simulated classifiers (answering 500 tasks)
• Normalized trust scores



33Simulation with circles
Binary setting

Ground truth
w1

Linear SVC
w2

SVC
w3

GBM

0

0.5

1

A
U
M 0.2 0.4 0.6 0.8 1

0
0.5
1
1.5
2

q0.1

WAUM

0

0.25

0.5

s(
j
) 0.4

0.6

0.8

• Workers = simulated classifiers (answering 500 tasks)
• Normalized trust scores



34Simulation with circles
Three classes

Ground truth
w1

Linear SVC
w2

SVC
w3

GBM

0

0.5

1

A
U
M 0 0.5

0

1

2
q0.1

WAUM

0

0.25

0.5

s(
j
) 0.2

0.4

0.6

0.8

• 3 classes with 250 tasks per class
• Normalized trust scores
• Neural Network: 3-dense layers’ artificial neural network (30, 20, 20)



35How can we use the WAUM?
Pruning to avoid learning of too ambiguous data
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Test accuracy 0.727 0.697 0.753 0.578 0.806
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36On the simulation setting

"3 answers per task is not enough!"

• Yes ! It is not
• . . .but it happens→ Pl@ntNet(20) (future work), LabelMe(21)

• LabelMe 1000 images (subset of LabelMe image segmentation project)

• Each image was labelled by 1, 2 or 3 workers

(20) C. Garcin, A. Joly, et al. (2021). “Pl@ntNet-300K: a plant image dataset with high label ambiguity and a long-tailed distribution”. In: Proceedings of the
Neural Information Processing Systems Track on Datasets and Benchmarks.
(21) F. Rodrigues and F. Pereira (2018). “Deep learning from crowds”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 32. 1.



36On the simulation setting

"3 answers per task is not enough!"
• Yes ! It is not
• . . .but it happens→ Pl@ntNet(20) (future work), LabelMe(21)

• LabelMe 1000 images (subset of LabelMe image segmentation project)
• Each image was labelled by 1, 2 or 3 workers

(20) C. Garcin, A. Joly, et al. (2021). “Pl@ntNet-300K: a plant image dataset with high label ambiguity and a long-tailed distribution”. In: Proceedings of the
Neural Information Processing Systems Track on Datasets and Benchmarks.
(21) F. Rodrigues and F. Pereira (2018). “Deep learning from crowds”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 32. 1.



36On the simulation setting

"3 answers per task is not enough!"
• Yes ! It is not
• . . .but it happens→ Pl@ntNet(20) (future work), LabelMe(21)

• LabelMe 1000 images (subset of LabelMe image segmentation project)
• Each image was labelled by 1, 2 or 3 workers

LabelMe and task difficulty
• Entropy is not reliable at all
• GLAD can’t estimate a task difficulty for tasks with 1 label

(20) C. Garcin, A. Joly, et al. (2021). “Pl@ntNet-300K: a plant image dataset with high label ambiguity and a long-tailed distribution”. In: Proceedings of the
Neural Information Processing Systems Track on Datasets and Benchmarks.
(21) F. Rodrigues and F. Pereira (2018). “Deep learning from crowds”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 32. 1.



37Results on CIFAR10H
Improved mislabeled detections: worst aum/waum



37Results on CIFAR10H
Improved mislabeled detections: worst aum/waum



38Intermission

Back to the application of the AUM/WAUM to the CIFAR10H dataset.



39Prediction performance

Table: Label recovery, generalization performance and calibration error on the
CIFAR-10H dataset by a Resnet-18

Aggregation method Test accuracy (on CIFAR10-train) ECE (expected calibration error)

MV 69.533 ± 0.84 0.175 ± 0.00
Naive soft 72.149 ± 2.74 0.132 ± 0.03
DS (vanilla) 70.268 ± 0.93 0.173 ± 0.00
DS (spam identification) 70.053 ± 0.81 0.174 ± 0.0
GLAD 66.569 ± 8.48 0.173 ± 0.01
WAUM 72.747 ± 1.93 0.124 ± 0.00



40"Can I use the WAUM in my framework?"
Most probably yes

• Most frameworks are built on DS model
▶ the WAUM only needs a neural network and π̂(j)



41Conclusion

Take home message(s)
• Crowdsourcing / Label uncertainty : helpful for data curating

• Improved data quality⇒ improved learning performance
• (Fast) "stacked" WAUM : the presented version requires one neural

network per worker (stacked version : one neural network per dataset)

Future work & wishful thinking
▶ Soon a crowdsourced module in benchopt

https://benchopt.github.io/

▶ Pl@ntnet crowdsourced dataset: coming, but it’s messy (2M workers, 2
labels per task on average,...)

Tanguy Lefort: "I swear that, if I make a crowdsourcing experiment,
I will release both the tasks and labels"

https://benchopt.github.io/
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